ARTIFICIAL INTELLIGENCE-DRIVEN FOG RADIO ACCESS NETWORKS Integrating Decision Making Considering Different Time Granularities

被引:2
|
作者
DeAlmeida, Jonathan M. [1 ,2 ]
DaSilva, Luiz A. [3 ]
Both, Cristiano B. [4 ]
Ralha, Celia G. [5 ]
Marotta, Marcelo A. [1 ]
机构
[1] Univ Brasilia, Comp Sci, BR-70910900 Brasilia, DF, Brazil
[2] Virginia Tech, Cybersecur, Arlington, VA 22203 USA
[3] IEEE, Commun Soc, Piscataway, NJ USA
[4] Univ Vale Rio dos Sinos, Appl Comp Grad Program, BR-93022000 Sao Leopoldo, RS, Brazil
[5] Univ Brasilia, Informat Grad Program, BR-70910900 Brasilia, DF, Brazil
来源
IEEE VEHICULAR TECHNOLOGY MAGAZINE | 2021年 / 16卷 / 03期
关键词
ALLOCATION;
D O I
10.1109/MVT.2021.3078417
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cloud- and fog-based networks are promising paradigms for vehicular and mobile networks. Fog radio access networks (F-RANs), in particular, can offload computation tasks to the network edge (i.e., in the fog) and reduce latency. Artificial intelligence (AI) techniques can be used in F-RANs to achieve, for example, enhanced energy efficiency and increased throughput. Nonetheless, the appropriate technique selection must consider the different time granularities at which decision making occurs in F-RANs. © 2005-2012 IEEE.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 17 条
  • [1] ARTIFICIAL INTELLIGENCE-DRIVEN FOG-COMPUTING-BASED RADIO ACCESS NETWORKS
    Mugen Peng
    Jie Zhang
    Shuai Han
    Zhiyong Chen
    Chonggang Wang
    [J]. China Communications, 2019, 16 (11) : 5 - 6
  • [2] Artificial intelligence-driven decision making and firm performance: a quantitative approach
    Giachino, Chiara
    Cepel, Martin
    Truant, Elisa
    Bargoni, Augusto
    [J]. MANAGEMENT DECISION, 2024,
  • [3] Special Issue on "Artificial Intelligence-Driven Decision Making in Health and Medicine"
    La Torre, Davide
    Bertossi, Leopoldo
    Kunze, Herb
    Poulin, Marc
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (05) : 2691 - 2692
  • [4] The Interplay between Artificial Intelligence and Fog Radio Access Networks
    Xia, Wenchao
    Zhang, Xinruo
    Zheng, Gan
    Zhang, Jun
    Jin, Shi
    Zhu, Hongbo
    [J]. CHINA COMMUNICATIONS, 2020, 17 (08) : 1 - 13
  • [5] The Interplay between Artificial Intelligence and Fog Radio Access Networks
    Wenchao Xia
    Xinruo Zhang
    Gan Zheng
    Jun Zhang
    Shi Jin
    Hongbo Zhu
    [J]. China Communications, 2020, 17 (08) : 1 - 13
  • [6] Artificial-Intelligence-Driven Fog Radio Access Networks: Recent Advances and Future Trends
    Peng, Mugen
    Quek, Tony Q. S.
    Mao, Guoqiang
    Ding, Zhiguo
    Wang, Chongang
    [J]. IEEE WIRELESS COMMUNICATIONS, 2020, 27 (02) : 12 - 13
  • [7] Future of Business Culture: An Artificial Intelligence-Driven Digital Framework for Organization Decision-Making Process
    Rajagopal, Navaneetha Krishnan
    Qureshi, Naila Iqbal
    Durga, S.
    Asis, Edwin Hernan Ramirez
    Soto, Rosario Mercedes Huerta
    Gupta, Shashi Kant
    Deepak, S.
    [J]. COMPLEXITY, 2022, 2022
  • [8] Future of Business Culture: An Artificial Intelligence-Driven Digital Framework for Organization Decision-Making Process
    Rajagopal, Navaneetha Krishnan
    Qureshi, Naila Iqbal
    Durga, S.
    Ramirez Asis, Edwin Hernan
    Huerta Soto, Rosario Mercedes
    Gupta, Shashi Kant
    Deepak, S.
    [J]. Complexity, 2022, 2022
  • [9] Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models
    Saravi, Babak
    Hassel, Frank
    Ulkumen, Sara
    Zink, Alisia
    Shavlokhova, Veronika
    Couillard-Despres, Sebastien
    Boeker, Martin
    Obid, Peter
    Lang, Gernot Michael
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (04):
  • [10] Enhancing Industry 4.0 Maturity: Integrating Lean Practices as a Key Feature in Artificial Intelligence-Driven Decision Support Model for Companies
    Oussama, Ben Ali
    Fehmi, H'Mida
    Sondes, Hammami
    [J]. 28TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, INES 2024, 2024, : 21 - 26