A Demonstration of Stella: A Crowdsourcing-Based Geotagging Framework

被引:1
|
作者
Jonathan, Christopher [1 ]
Mokbel, Mohamed F. [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2017年 / 10卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.14778/3137765.3137821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper demonstrates Stella; an efficient crowdsourcing-based geotagging framework for any types of objects. In this demonstration, we showcase the effectiveness of Stella in geotagging images via two different scenarios: (1) we provide a graphical interface to show the process of a geotagging process that have been done by using Amazon Mechanical Turk, (2) we seek help from the conference attendees to propose an image to be geotagged or to help us geotag an image by using our application during the demonstration period. At the end of the demonstration period, we will show the geotagging result.
引用
收藏
页码:1969 / 1972
页数:4
相关论文
共 50 条
  • [1] Stella: Geotagging Images via Crowdsourcing
    Jonathan, Christopher
    Mokbel, Mohamed F.
    [J]. 26TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2018), 2018, : 169 - 178
  • [2] Cloud Consulting Crowdsourcing-Based Framework for ERP Consulting
    Jamous, Naoum
    Nader, Yassar
    [J]. AMCIS 2017 PROCEEDINGS, 2017,
  • [3] A crowdsourcing-based incremental learning framework for automated essays scoring
    Bai, Huanyu
    Hui, Siu Cheung
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [4] Crowdsourcing-Based Musical Predictions
    Boyd, Nicholas
    Chang, Wei
    Wu, Jie
    [J]. 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS), 2017, : 502 - 506
  • [5] A Crowdsourcing-based Framework for Improving Geo-spatial Open Data
    Karam, Roula
    Melchiori, Michele
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 468 - 473
  • [6] Crowdsourcing-Based Scientific Data Processing
    Zhao J.
    Mu S.
    Wang X.
    Lin Q.
    Zhang X.
    Zhou Y.
    [J]. Zhou, Yuanchun (zyc@cnic.cn), 1600, Science Press (54): : 284 - 294
  • [7] A Crowdsourcing-Based Platform for Better Governance
    Chandrasekaran, Vishal
    Rajan, Shivnesh V.
    Vasani, Romil Kumar
    Menon, Anirudh
    Sivakumar, P. Bagavathi
    Velayutham, C. Shunmuga
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING SYSTEMS, ICSCS 2015, VOL 1, 2016, 397 : 519 - 527
  • [8] CrowdMD: Crowdsourcing-based Approach For Deduplication
    Abboura, Asma
    Sahri, Soror
    Ouziri, Mourad
    Benbernou, Salima
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2621 - 2627
  • [9] Robust Crowdsourcing-based Linear Regression
    Abbaasi, Saeid
    Mohammadi, Majid
    Davodly, Ehsan Shams
    [J]. 2016 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2016, : 141 - 146
  • [10] A Crowdsourcing-Based Framework for the Development and Validation of Machine Readable Parallel Corpus for Sign Languages
    Farooq, Uzma
    Mohd Rahim, Mohd Shafry
    Khan, Nabeel Sabir
    Rasheed, Saim
    Abid, Adnan
    [J]. IEEE ACCESS, 2021, 9 : 91788 - 91806