Sparse graph-based transduction for image classification

被引:3
|
作者
Huang, Sheng [1 ,2 ]
Yang, Dan [1 ,2 ,3 ]
Zhou, Jia [1 ]
Huangfu, Lunwen [4 ]
Zhang, Xiaohong [2 ,3 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Minist Educ, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Sch Software Engn, Chongqing 400044, Peoples R China
[4] Univ Arizona, Eller Coll Management, Tucson, AZ 85721 USA
关键词
image classification; sparse representation; graph learning; transductive learning; semisupervised learning; FACE-RECOGNITION; REPRESENTATION;
D O I
10.1117/1.JEI.24.2.023007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motivated by the remarkable successes of graph-based transduction (GT) and sparse representation (SR), we present a classifier named sparse graph-based classifier (SGC) for image classification. In SGC, SR is leveraged to measure the correlation (similarity) of every two samples and a graph is constructed for encoding these correlations. Then the Laplacian eigenmapping is adopted for deriving the graph Laplacian of the graph. Finally, SGC can be obtained by plugging the graph Laplacian into the conventional GT framework. In the image classification procedure, SGC utilizes the correlations which are encoded in the learned graph Laplacian, to infer the labels of unlabeled images. SGC inherits the merits of both GT and SR. Compared to SR, SGC improves the robustness and the discriminating power of GT. Compared to GT, SGC sufficiently exploits the whole data. Therefore, it alleviates the undercomplete dictionary issue suffered by SR. Four popular image databases are employed for evaluation. The results demonstrate that SGC can achieve a promising performance in comparison with the state-of-the-art classifiers, particularly in the small training sample size case and the noisy sample case. (C) 2015 SPIE and IS&T
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Sparse graph-based inductive learning with its application to image classification
    Huang, Qianying
    Zhang, Xiaohong
    Huang, Sheng
    Yang, Dan
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (05)
  • [2] Dual Sparse Representation Graph-Based Copropagation for Semisupervised Hyperspectral Image Classification
    Zhang, Youqiang
    Cao, Guo
    Wang, Bisheng
    Li, Xuesong
    Amoako, Prince Yaw Owusu
    Shafique, Ayesha
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Graph-based sparse representation for image denoising
    Ge, Qi
    Cheng, Xiaogang
    Shao, Wenze
    Dong, Yue
    Zhuang, Wenqin
    Li, Haibo
    6TH INTERNATIONAL CONFERENCE ON APPLIED HUMAN FACTORS AND ERGONOMICS (AHFE 2015) AND THE AFFILIATED CONFERENCES, AHFE 2015, 2015, 3 : 2049 - 2056
  • [4] Knowledge graph-based image classification
    Mbiaya, Franck Anael
    Vrain, Christel
    Ros, Frederic
    Dao, Thi-Bich-Hanh
    Lucas, Yves
    DATA & KNOWLEDGE ENGINEERING, 2024, 151
  • [5] A Graph-Based Algorithm for Supervised Image Classification
    Du, Ke
    Liu, Jinlong
    Zhang, Xingrui
    Feng, Jianying
    Guan, Yudong
    Domas, Stephane
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 184 - 193
  • [6] Knowledge Graph-Based Image Classification Refinement
    Zhang, Dehai
    Cui, Menglong
    Yang, Yun
    Yang, Po
    Xie, Cheng
    Liu, Di
    Yu, Beibei
    Chen, Zhibo
    IEEE ACCESS, 2019, 7 : 57678 - 57690
  • [7] Graph-based Image Classification by Weighting Scheme
    Jiang, Chuntao
    Coenen, Frans
    APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVI, 2009, : 63 - 76
  • [8] A Discriminant Sparse Representation Graph-Based Semi-Supervised Learning for Hyperspectral Image Classification
    Shao, Yuanjie
    Gao, Changxin
    Sang, Nong
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 160 - 167
  • [9] A discriminant sparse representation graph-based semi-supervised learning for hyperspectral image classification
    Shao, Yuanjie
    Gao, Changxin
    Sang, Nong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10959 - 10971
  • [10] A discriminant sparse representation graph-based semi-supervised learning for hyperspectral image classification
    Yuanjie Shao
    Changxin Gao
    Nong Sang
    Multimedia Tools and Applications, 2017, 76 : 10959 - 10971