Disposal of waste into aquatic ecosystems may cause microalgae to be exposed to various metals, e.g. copper and cadmium. The effects caused by combinations of metals may be more serious. Evaluations of subcellular fate, bioaccumulation, and biological effects of metals on aquatic organisms are generally derived from experiments with individual metals. The present study aims to evaluate the effects of exposure of Chlorella pyrenoidosa to copper and cadmium in combination on subcellular accumulation, distribution, and growth. The algae were exposed for 72h to copper at concentrations of 13-25 mu mol L-1, cadmium at about 6 mu mol L-1, and combinations thereof. The levels of copper and cadmium in subcellular organelles, heat-denaturated protein, metal-rich granules, and heat-stable protein were determined by atomic absorption spectrometry. Exposure of C. pyrenoidosa to copper and cadmium in combination inhibited growth more strongly than copper and cadmium individually. Highest accumulation was observed in metal-rich granules and heat-stable proteins. Administration of both metals in combination affected their subcellular distribution: copper was mainly distributed into the metal-rich granules (70%-80%) and heat-stable proteins (9%-24%), cadmium in the metal-rich granules (88%-98%).