SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells

被引:100
|
作者
Liang, Danyang [1 ]
Zhuo, Yisha [1 ]
Guo, Zeheng [1 ]
He, Lihua [1 ]
Wang, Xueyi [1 ]
He, Yulong [1 ]
Li, Lexing [1 ]
Dai, Hanchuan [1 ]
机构
[1] Huazhong Agr Univ, Coll Vet Med, 1 Shizishan St, Wuhan 430070, Hubei, Peoples R China
关键词
SIRT1/PGC-1; alpha; Oxidative damage; Intestinal epithelial cells; Autophagy; Mitophagy; STRESS; SIRT1; AUTOPHAGY; MITOCHONDRIA; PROTECTS;
D O I
10.1016/j.biochi.2019.12.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress leads to intestinal epithelial cells damage, which induces tight junction injury and systemic endogenous stress syndrome. The evidence suggests that SIRT1/PGC-1 alpha pathway is closely associated with oxidative damage. However, the mechanism in protecting intestinal epithelial cells against oxidative stress dependant on autopahgy/mitophagy remains to be elucidated. In the current study, we investigated the functional role of SIRT1/PGC-1 alpha pathway on regulation of autopahgy/mitophagy and tight junction protein expression underlying the oxidative dysfunction in porcine intestinal epithelial cells (IPEC-1). Results demonstrated that H2O2 exposure caused high accumulation of ROS, with a decrease of mitochondrial membrane potential and an inhibition of the tight junction molecules in IPEC-1 cells. Also, COX IV mRNA expression and SIRT1/PGC-1 alpha pathway were suppressed. Autophagy and PINK1/Parkin dependant-mitophagy were activated following H2O2 treatment. Further research indicated that activation of SIRT1/PGC-1 alpha pathway caused by specific activator SRT 1720 resulted in elevating autophagy/mitophagy related markers and SIRT1 inhibitor EX 527 reversed these effects. Additionally, SIRT1 activation significantly suppressed the ROS generation, leading to increase mitochondrial membrane potential and COX IV expression. Most importantly, the expression of tight junction molecules contributing to maintain intestinal barrier integrity was significantly up-regulated. Collectively, these findings indicated that autophagy/mitophagy elevation caused by SIRT1/PGC-1 alpha pathway activation might be a protective mechanism to increase tight junction integrity against oxidative stress-mediated ROS production in IPEC-1 cells. (C) 2019 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 50 条
  • [1] Senegenin Attenuates Pulmonary Fibrosis by Inhibiting Oxidative-Stress-Induced Epithelial Cell Senescence through Activation of the Sirt1/Pgc-1α Signaling Pathway
    Zeng, Qian
    Luo, Yuyang
    Sang, Xiaoxue
    Liao, Minlin
    Wen, Binbin
    Hu, Zhengang
    Sun, Mei
    Luo, Ziqiang
    Huang, Xiaoting
    Liu, Wei
    Tang, Siyuan
    ANTIOXIDANTS, 2024, 13 (06)
  • [2] Diosgenin attenuates nonalcoholic hepatic steatosis through the hepatic SIRT1/PGC-1 α pathway
    Meng, Decheng
    Yin, Guoliang
    Chen, Suwen
    Zhang, Xin
    Yu, Wenfei
    Wang, Linya
    Liu, Hongshuai
    Jiang, Wenying
    Sun, Yuqing
    Zhang, Fengxia
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 977
  • [3] SIRT1/PGC-1α signaling activation by mangiferin attenuates cerebral hypoxia/reoxygenation injury in neuroblastoma cells
    Chen, Mengfan
    Wang, Zheng
    Zhou, Wenying
    Lu, Chenxi
    Ji, Ting
    Yang, Wenwen
    Jin, Zhenxiao
    Tian, Ye
    Lei, Wangrui
    Wu, Songdi
    Fu, Qi
    Wu, Zhen
    Wu, Xue
    Han, Mengzhen
    Fang, Minfeng
    Yang, Yang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 907
  • [4] DEHP induced mitochondrial damage through sirt1/pgc-1α pathway in HepG2 cells
    Bu, Ling-Ling
    Liu, Huan
    Yang, Jiao
    Huang, Zhuo-Quan
    Jin, Deng-Peng
    Ke, Qian-Hua
    Liu, Chun-Hong
    Zhongguo Huanjing Kexue/China Environmental Science, 2020, 40 (08): : 3621 - 3626
  • [5] Perampanel Stimulates Mitochondrial Biogenesis in Neuronal Cells through Activation of the SIRT1/PGC-1α Signaling Pathway
    Jiang, Ying
    Li, Da
    Du, Zhiqiang
    Li, Jie
    Lu, Rongrong
    Zhou, Qin
    Wang, Qi
    Zhu, Haohao
    ACS CHEMICAL NEUROSCIENCE, 2021, 12 (02): : 323 - 329
  • [6] Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway
    Wang, Sufan
    Wan, Ting
    Ye, Mingtong
    Qiu, Yun
    Pei, Lei
    Jiang, Rui
    Pang, Nengzhi
    Huang, Yuanling
    Liang, Baoxia
    Ling, Wenhua
    Lin, Xiaojun
    Zhang, Zhenfeng
    Yang, Lili
    REDOX BIOLOGY, 2018, 17 : 89 - 98
  • [7] SIRT1/PGC-1: A neuroprotective axis?
    Rasouri, Sournya
    Lagouge, Marie
    Auwerx, Johan
    M S-MEDECINE SCIENCES, 2007, 23 (10): : 840 - 844
  • [8] Formononetin Attenuates Renal Tubular Injury and Mitochondrial Damage in Diabetic Nephropathy Partly via Regulating Sirt1/PGC-1α Pathway
    Huang, Qunwei
    Chen, Hongbo
    Yin, Kai
    Shen, Yilan
    Lin, Kanghong
    Guo, Xieyi
    Zhang, Xiang
    Wang, Niansong
    Xin, Wenfeng
    Xu, Youhua
    Gui, Dingkun
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [9] Curcumin attenuates isoniazid-induced hepatotoxicity by upregulating the SIRT1/PGC-1α/NRF1 pathway
    Li, Yun
    Luo, Wen-Wen
    Cheng, Xuan
    Xiang, Huai-Rong
    He, Bei
    Zhang, Qi-Zhi
    Peng, Wen-Xing
    JOURNAL OF APPLIED TOXICOLOGY, 2022, 42 (07) : 1192 - 1204
  • [10] Resveratrol Attenuates Hyperoxia Lung Injury in Neonatal Rats by Activating SIRT1/PGC-1α Signaling Pathway
    Yang, Kun
    Yang, Menghan
    Shen, Yunchuan
    Kang, Lan
    Zhu, Xiaodan
    Dong, Wenbin
    Lei, Xiaoping
    AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 (08) : 1039 - 1049