A NONOSCILLATION THEOREM FOR SUBLINEAR EMDEN-FOWLER EQUATIONS

被引:4
|
作者
Wong, James S. W. [1 ,2 ]
机构
[1] Chinney Investments Ltd, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
Second order; nonlinear ordinary differential equations; oscillation;
D O I
10.1142/S0219530503000053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the Emden-Fowler equation (E) : y '' + a(x)vertical bar y vertical bar(gamma-1)y = 0, where gamma > 0 and a(x) is a positive continuous function on (0, infinity). I. T. Kiguradze showed in 1962 that if x((gamma+3)/2+delta)a(x) is nonincreasing for any delta > 0, then equation (E) is nonoscillatory when gamma > 1. We prove in this paper that the same theorem remains valid in the sublinear case, i.e., equation (E) when 0 < gamma < 1.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条