A text-independent speaker verification model: A comparative analysis

被引:0
|
作者
Charan, Rishi [1 ]
Manisha, A. [1 ]
Karthik, R. [1 ]
Kumar, Rajesh M. [1 ]
机构
[1] VIT Univ, Sch Elect Engn, Vellore, Tamil Nadu, India
关键词
MFCC (Mel-frequency cepstral coefficient); LPCC (linear predictive cepstral coefficient); PCA (Principal component analysis) and t-SNE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most pressing challenge in the field of voice biometrics is selecting the most efficient technique of speaker recognition. Every individual's voice is peculiar, factors like physical differences in vocal organs, accent and pronunciation contributes to the problem's complexity. In this paper, we explore the various methods available in each block in the process of speaker recognition with the objective to identify best of techniques that could be used to get precise results. We study the results on text independent corpora. We use MFCC (Mel-frequency cepstral coefficient), LPCC (linear predictive cepstral coefficient) and PLP (perceptual linear prediction) algorithms for feature extraction, PCA (Principal Component Analysis) and t-SNE for dimensionality reduction and SVM (Support Vector Machine), feed forward, nearest neighbor and decision tree algorithms for classification block in speaker recognition system and comparatively analyze each block to determine the best technique.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Text-independent speaker verification with dynamic trajectory model
    Xiang, B
    IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (05) : 141 - 143
  • [2] A tutorial on text-independent speaker verification
    Bimbot, F. (bimbot@irisa.fr), 1600, Hindawi Publishing Corporation (2004):
  • [3] A tutorial on text-independent speaker verification
    Bimbot, F
    Bonastre, JF
    Fredouille, C
    Gravier, G
    Magrin-Chagnolleau, I
    Meignier, S
    Merlin, T
    Ortega-García, J
    Petrovska-Delacrétaz, D
    Reynolds, DA
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (04) : 430 - 451
  • [4] A Tutorial on Text-Independent Speaker Verification
    Frédéric Bimbot
    Jean-François Bonastre
    Corinne Fredouille
    Guillaume Gravier
    Ivan Magrin-Chagnolleau
    Sylvain Meignier
    Teva Merlin
    Javier Ortega-García
    Dijana Petrovska-Delacrétaz
    Douglas A. Reynolds
    EURASIP Journal on Advances in Signal Processing, 2004
  • [5] Residual Factor Analysis for Text-independent Speaker Verification
    Zhu, Lei
    Zheng, Rong
    Xu, Bo
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 964 - 968
  • [6] A novel text-independent speaker verification method based on the global speaker model
    Zhang, YY
    Zhang, D
    Zhu, XY
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (05): : 598 - 602
  • [7] Graphical models for text-independent speaker verification
    Sánchez-Soto, E
    Sigelle, M
    Chollet, G
    NONLINEAR SPEECH MODELING AND APPLICATIONS, 2005, 3445 : 410 - 415
  • [8] Language dependency in text-independent speaker verification
    Auckenthaler, R
    Carey, MJ
    Mason, JSD
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 441 - 444
  • [9] Text-independent speaker verification in embedded environments
    Tydlitat, Borivoj
    Navratil, Jiri
    Pelecanos, Jason W.
    Ramaswamy, Ganesh N.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 293 - +
  • [10] ORTHOGONAL TRAINING FOR TEXT-INDEPENDENT SPEAKER VERIFICATION
    Zhu, Yingke
    Mak, Brian
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6584 - 6588