Iterative Maximum Likelihood and Outlier-robust Bipercentile Estimation of Parameters of Compound-Gaussian Clutter With Inverse Gaussian Texture

被引:36
|
作者
Shui, Peng-Lang [1 ]
Shi, Li-Xiang [1 ]
Yu, Han [1 ]
Huang, Yu-Ting [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
关键词
Compound-Gaussian model with inverse Gaussian texture; iterative maximum likelihood (ML) estimator; moment-based estimator; outlier-robust bipercentile estimator;
D O I
10.1109/LSP.2016.2605129
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compound-Gaussian model with the inverse Gaussian texture (IG-CG) is recognized to be one of the best models to characterize high-resolution sea clutter at low grazing angles. The model parameters are often estimated by the second-and fourth-order amplitude sample moments, which are of low precision and easily interfered by outliers of high power such as returns of ships and reefs and sea spikes. In this letter, an iterative maximum likelihood (ML) estimator and an outlier-robust bipercentile estimator are proposed and are compared with the moment-based estimator. The experimental results show that the iterative ML estimator is better in performance than the moment-based estimator when samples are without outliers and the bipercentile estimator behaves better when samples contain a small number of outliers.
引用
收藏
页码:1572 / 1576
页数:5
相关论文
共 50 条
  • [1] Outlier-Robust Truncated Maximum Likelihood Parameter Estimation of Compound-Gaussian Clutter with Inverse Gaussian Texture
    Tian, Chao
    Shui, Peng-Lang
    REMOTE SENSING, 2022, 14 (16)
  • [2] Iterative maximum likelihood and zFlogz estimation of parameters of compound-Gaussian clutter with inverse gamma texture
    Xu, Shuwen
    Wang, Le
    Shui, Penglang
    Li, Xin
    Zhang, Jiankang
    2018 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2018,
  • [3] Outlier-robust parameters estimation for compound-Gaussian Clutter using inverse gamma texture based on truncated moments
    Xu, Shuwen
    Wang, Le
    Zhang, Fuquan
    Shui, Penglang
    REMOTE SENSING LETTERS, 2019, 10 (03) : 274 - 282
  • [4] Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture
    Balleri, Allessio
    Nehorai, Arye
    Wang, Jian
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (02) : 775 - 780
  • [5] Iterative maximum likelihood estimation of the compound inverse Gaussian clutter parameters
    Belhi, K.
    Soltani, F.
    Mezache, A.
    ELECTRONICS LETTERS, 2020, 56 (13) : 677 - +
  • [6] Explicit bipercentile parameter estimation of compound-Gaussian clutter with inverse gamma distributed texture
    Shui, Peng-Lang
    Yu, Han
    Shi, Li-Xiang
    Yang, Chun-Jiao
    IET RADAR SONAR AND NAVIGATION, 2018, 12 (02): : 202 - 208
  • [7] Maximum likelihood estimation of compound-Gaussian clutter and target parameters
    Wang, Jian
    Dogandzic, Aleksandar
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) : 3884 - 3898
  • [8] Outlier-robust Tri-percentile Parameter Estimation Method of Compound-Gaussian Clutter with Inverse Gaussian Textures br
    Shui, Penglang
    Tian, Chao
    Feng, Tian
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (02) : 542 - 549
  • [9] GRNN-Based Outlier-Robust Parameter Estimation of Compound-Gaussian Sea Clutter With Generalized Inverse Gaussian Textures
    Zou, Peng-Jia
    Zhao, Zi-Jian
    He, Zhen-Ge
    Shui, Peng-Lang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [10] Outlier-robust tri-percentile parameter estimation of compound-Gaussian clutter with lognormal distributed texture
    Feng, Tian
    Shui, Peng-Lang
    DIGITAL SIGNAL PROCESSING, 2022, 120