Propagation dynamics of chirped Pearcey-Gaussian beam in fractional Schrodinger equation under Gaussian potential

被引:6
|
作者
Gao, Ru [1 ]
Ren, Shumin [1 ]
Guo, Teng [1 ]
Wang, PengXiang [1 ]
Xiao, Yan [1 ]
机构
[1] Shanxi Univ, Coll Phys & Elect Engn, Taiyuan 030006, Peoples R China
来源
OPTIK | 2022年 / 254卷
关键词
Pearcey-Gaussian beam; Fractional Schrodinger equation; Gaussian potential; ENERGY AIRY BEAMS; GAP SOLITONS;
D O I
10.1016/j.ijleo.2022.168661
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of the Pearcey-Gaussian beam with the symmetric Gaussian potential based on the fractional Schrodinger equation is discussed. The results show that the Pearcey-Gaussian beam evolves a straight line with much side lobes without the external potential. When taking the Gaussian potential into account, the diffraction effect of the beam is enhanced and even chaos occurs with the increasing of Levy index. The direction deflection of the beam can be altered by adjusting the potential and beam parameters, such as potential width, potential height and transverse wave number. In addition, the influence of the chirp on the dynamics of the Pearcey-Gaussian beam in the free space and external potential is investigated.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Periodic evolution of the Pearcey-Gaussian beam in the fractional Schrodinger equation under Gaussian potential
    Gao, Ru
    Guo, Teng
    Ren, Shumin
    Wang, Pengxiang
    Xiao, Yan
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2022, 55 (09)
  • [2] Propagation dynamics of symmetric Pearcey-Gaussian beam with optical vortices
    Yue X.
    Shang Y.
    Wang W.
    Mi Z.
    Zhang L.
    Wang B.
    Han K.
    Lei C.
    Man Z.
    Ge X.
    [J]. Optik, 2023, 272
  • [3] Controllable propagation of Pearcey-Gaussian beams in photorefractive media with fractional Schr?dinger equation
    Guo, Teng
    Ren, Shumin
    Wang, Pengxiang
    Xiao, Yan
    [J]. OPTICA APPLICATA, 2022, 52 (04) : 627 - 638
  • [4] Bound state of the Pearcey-Gaussian beam in the medium with parabolic potential
    Wen, Jianjun
    Wang, Haowen
    Gao, Ru
    Ren, Shumin
    Guo, Teng
    Xiao, Yan
    [J]. OPTIK, 2023, 276
  • [5] Propagation dynamics of the second-order chirped circular Pearcey Gaussian vortex beam in the fractional nonlinear Schrödinger equation
    He, Shangling
    Peng, Xi
    He, Yingji
    Shan, Chun
    Deng, Dongmei
    [J]. Chaos, Solitons and Fractals, 2024, 189
  • [6] Autofocus properties of astigmatic chirped symmetric Pearcey Gaussian vortex beams in the fractional Schrodinger equation with parabolic potential
    He, S. H. A. N. G. L. I. N. G.
    Peng, X., I
    He, Y. I. N. G. J. I.
    Deng, D. O. N. G. M. E., I
    [J]. OPTICS EXPRESS, 2023, 31 (11) : 17930 - 17942
  • [7] Dynamics of Pearcey-Gaussian pulses in a multimode fiber
    Huang, Yu-Ming
    Liu, Ping-Wei
    Yi, Kai-Wen
    Chen, Rui-Feng
    Deng, Zhen-Zhou
    Hong, Wei-Yi
    [J]. OPTICS COMMUNICATIONS, 2021, 488
  • [8] Propagation dynamics of the odd-Pearcey Gaussian beam in a parabolic potential
    Mo, Zhenwu
    Wu, You
    Lin, Zejia
    Jiang, Junjie
    Xu, Danlin
    Huang, Haiqi
    Yang, Haobin
    Deng, Dongmei
    [J]. APPLIED OPTICS, 2021, 60 (23) : 6730 - 6735
  • [9] Nonlinear propagation dynamics of Gaussian beams in fractional Schrodinger equation
    Jiao, Ruiyun
    Zhang, Wenqian
    Dou, Lichao
    Liu, Bing
    Zhan, Kaiyun
    Jiao, Zhiyong
    [J]. PHYSICA SCRIPTA, 2021, 96 (06)
  • [10] Dynamics of the Pearcey Gaussian beam in linear potential
    Ren, Shumin
    Guo, Teng
    Gao, Ru
    Wang, Pengxiang
    Xiao, Yan
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (11):