Clustering of Inertial Particles in 3D Steady Flows

被引:0
|
作者
Sapsis, Themistoklis [1 ]
Haller, George [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
inertial particles; Ergodic Theory; Melmkov Theory; DYNAMICS; SPHERE; MOTION;
D O I
10.1142/9789814299725_0034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the motion of inertial particles in three-dimensional steady fluid flows that contain a family of two-dimensional invariant manifolds Using results from Ergodic Theory we derive a condition that predicts if the considered invariant manifold for the flow will persist as an invariant manifold for inertial particles We illustrate our results for the three-dimensional ABC flow with paremeters corresponding to a non-integrable case
引用
收藏
页码:294 / 301
页数:8
相关论文
共 50 条
  • [1] Analysis of the clustering of inertial particles in turbulent flows
    Esmaily-Moghadam, Mahdi
    Mani, Ali
    [J]. PHYSICAL REVIEW FLUIDS, 2016, 1 (08):
  • [2] Clustering of inertial particles in compressible chaotic flows
    Perez-Munuzuri, Vicente
    [J]. PHYSICAL REVIEW E, 2015, 91 (05):
  • [3] Fractal clustering of inertial particles in random flows
    Bec, J
    [J]. PHYSICS OF FLUIDS, 2003, 15 (11) : L81 - L84
  • [4] Clustering instability of the spatial distribution of inertial particles in turbulent flows
    Elperin, T
    Kleeorin, N
    L'vov, VS
    Rogachevskii, I
    Sokoloff , D
    [J]. PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036302
  • [5] Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows
    Einarsson, J.
    Angilella, J. R.
    Mehlig, B.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 278 : 79 - 85
  • [6] Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows
    Sapsis, Themistoklis
    Haller, George
    [J]. CHAOS, 2010, 20 (01)
  • [7] Numerical method for inertial migration of particles in 3D channels
    Chupin, Laurent
    Cindea, Nicolae
    [J]. COMPUTERS & FLUIDS, 2019, 192
  • [8] Clustering of inertial particles
    Chen, L.
    Goto, S.
    Vassilicos, J. C.
    [J]. PROGRESS IN TURBULENCE II, 2007, 109 : 221 - +
  • [9] Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1, ∞)
    Plotnikov, P. I.
    Weigant, W.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 58 - 82
  • [10] Giant negative mobility of inertial particles caused by the periodic potential in steady laminar flows
    Ai, Bao-quan
    Zhu, Wei-jing
    He, Ya-feng
    Zhong, Wei-rong
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (16):