The Concatenated Dynamic Convolutional and Sparse Coding on Image Artifacts Reduction

被引:1
|
作者
Yang, Linna [1 ]
Velastegui, Ronny [1 ]
机构
[1] Norwegian Univ Sci & Technol, Gjovik, Norway
关键词
Deep learning; Image reconstruction; Sparse coding; Dynamic convolution; DEBLOCKING; FRAMEWORK; DCT;
D O I
10.1007/978-3-030-86960-1_8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In order to enhance compressed JPEG image, a deep convolutional sparse coding network is proposed in this article. The network integrates state-of-the-art dynamic convolution to extract multi-scale image features, and uses convolutional sparse coding to separate image artifacts to generate coded feature for the final image reconstruction. Since this architecture consolidates model-based convolutional sparse coding with deep neural network, that allow this method has more interpretability. Also, compared with the existing network, which uses a dilated convolution as a feature extraction approach, this proposed concatenated dynamic method has improved de-blocking result in both numerical experiments and visual effect. Besides, in the higher compressed quality task, the proposed model has more pronounced improvement in reconstructed image quality evaluations.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [1] JPEG Artifacts Reduction via Deep Convolutional Sparse Coding
    Fu, Xueyang
    Zha, Zheng-Jun
    Wu, Feng
    Ding, Xinghao
    Paisley, John
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2501 - 2510
  • [2] Image classification via convolutional sparse coding
    Nozaripour, Ali
    Soltanizadeh, Hadi
    VISUAL COMPUTER, 2023, 39 (05): : 1731 - 1744
  • [3] Image classification via convolutional sparse coding
    Ali Nozaripour
    Hadi Soltanizadeh
    The Visual Computer, 2023, 39 : 1731 - 1744
  • [4] Reduction of blocking artifacts in image and video coding
    IEEE
    不详
    IEEE Trans Circuits Syst Video Technol, 3 (490-500):
  • [5] Reduction of blocking artifacts in image and video coding
    Meier, T
    Ngan, KN
    Crebbin, G
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1999, 9 (03) : 490 - 500
  • [6] Multimodal image enhancement using convolutional sparse coding
    Awais Ahmed
    She Kun
    Junaid Ahmed
    Shaukat Hayat
    Abdullah Aman Khan
    Multimedia Systems, 2023, 29 : 2099 - 2110
  • [7] Image fusion using online convolutional sparse coding
    Zhang C.
    Zhang Z.
    Feng Z.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 13559 - 13570
  • [8] Convolutional Sparse Coding for Image Super-resolution
    Gu, Shuhang
    Zuo, Wangmeng
    Xie, Qi
    Meng, Deyu
    Feng, Xiangchu
    Zhang, Lei
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1823 - 1831
  • [9] Multimodal image enhancement using convolutional sparse coding
    Ahmed, Awais
    Kun, She
    Ahmed, Junaid
    Hayat, Shaukat
    Khan, Abdullah Aman
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2099 - 2110
  • [10] CONVOLUTIONAL SPARSE CODING CLASSIFICATION MODEL FOR IMAGE CLASSIFICATION
    Chen, Boheng
    Li, Jie
    Ma, Biyun
    Wei, Gang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1918 - 1922