Superior electromagnetic properties of oriented silica-coated planar anisotropy carbonyl-iron particles in quasimicrowave band

被引:22
|
作者
Han, Rui [1 ]
Han, Xiang-hua [1 ]
Qiao, Liang [1 ]
Wang, Tao [1 ]
Li, Fa-shen [1 ]
机构
[1] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Inst Appl Magnet, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotational orientation; Microwave absorption; Quarter-wavelength resonator; Core-shell; ABSORPTION PROPERTIES; FERRITE; PERMEABILITY; COMPOSITES; ABSORBER;
D O I
10.1016/j.physb.2011.02.056
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
For the sake of thinner electromagnetic wave absorbers used in quasimicrowave band, the composite containing planar anisotropy carbonyl-iron (PACI) coated with amorphous SiO2 particles were rotationally oriented in an external magnetic field. The oriented PACI/SiO2 particles possess higher permeability, higher permittivity and lower matching thickness (t(m)) in quasimicrowave band compared with the nonoriented ones. The decrease in matching thickness of the oriented composite could be well explained by the increase of mu and epsilon due to rotational orientation. The oriented PACI/SiO2 core-shell material exhibits great potential for application of thinner absorber in quasimicrowave frequency range. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1932 / 1935
页数:4
相关论文
共 21 条
  • [1] Electromagnetic properties of silica-coated planar anisotropy carbonyl-iron particles in quasimicrowave band
    Han, Rui
    Han, Xiang-hua
    Qiao, Liang
    Wang, Tao
    Li, Fa-shen
    [J]. MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, PTS 1-3, 2011, 160-162 : 962 - 967
  • [2] Enhanced microwave absorption of ZnO-coated planar anisotropy carbonyl-iron particles in quasimicrowave frequency band
    Han, Rui
    Han, Xiang-hua
    Qiao, Liang
    Wang, Tao
    Li, Fa-shen
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2011, 128 (03) : 317 - 322
  • [3] Microwave complex permeability of planar anisotropy carbonyl-iron particles
    Han, Rui
    Qiao, Liang
    Wang, Tao
    Li, Fa-shen
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (06) : 2734 - 2737
  • [4] Complex permeability and microwave absorbing properties of planar anisotropy carbonyl-iron/Ni0.5Zn0.5Fe2O4 composite in quasimicrowave band
    Han, Rui
    Gong, Lu-qian
    Wang, Tao
    Qiao, Liang
    Li, Fa-shen
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2012, 131 (03) : 555 - 560
  • [5] RETRACTED: High-frequency magnetic properties of planar anisotropy carbonyl-iron particles (Retracted Article)
    Huo Tian-Xu
    Qiao Liang
    Wang Tao
    Li Fa-Shen
    [J]. ACTA PHYSICA SINICA, 2014, 63 (16)
  • [6] Greatly enhanced microwave absorbing properties of planar anisotropy carbonyl-iron particle composites
    Qiao, Liang
    Han, Rui
    Wang, Tao
    Tang, Liyun
    Li, Fashen
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 375 : 100 - 105
  • [7] Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid
    Hong, Kwang Pyo
    Song, Ki Hyeok
    Cho, Myeong Woo
    Kwon, Seung Hyuk
    Choi, Hyoung Jin
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2018, 29 (01) : 137 - 146
  • [8] Enhanced electromagnetic wave absorption properties of planar anisotropy carbonyl-iron/Fe3O4 composites in gigahertz range
    Zou, J.
    Liu, Q.
    Zi, Z.
    Dai, J.
    [J]. MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 304 - 309
  • [9] A Study on the Static Magnetic and Electromagnetic Properties of Silica-Coated Carbonyl Iron Powder after Heat Treatment for Improving Thermal Stability
    Yan, Xu
    Mu, Xinyuan
    Zhang, Qinsheng
    Ma, Zhanwei
    Song, Chengli
    Hu, Bin
    [J]. MATERIALS, 2022, 15 (07)
  • [10] Core-Shell Structured Silica-Coated Iron Nanowires Composites for Enhanced Electromagnetic Wave Absorption Properties
    Yang, Pingan
    Ye, Wenxian
    Ruan, Haibo
    Li, Rui
    Shou, Mengjie
    Yin, Yichen
    Huang, Xin
    Zhang, Yuxin
    Luo, Jiufei
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (10)