Stoichiometric investigations of laser-ablated brass plasma

被引:17
|
作者
Patel, D. N. [1 ]
Pandey, P. K. [1 ]
Thareja, R. K. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
关键词
FEMTOSECOND; NANOSECOND; DYNAMICS; CU; SPECTROSCOPY; PARAMETERS; EXPANSION;
D O I
10.1364/AO.51.00B192
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser-ablated brass plasma plumes expanding in various air pressures have been studied using optical emission spectroscopy and two-dimensional imaging. The velocity of the plume front calculated from the R-t plot decreases from 1.9 x 10(4) m/s to similar to 5.5 x 10(3) m/s as the pressure increases from 0.01 to 10(5) Pa. The estimated higher electron temperature for Cu I (510.5 nm) transition than for Zn I (481.1 nm) may be due to differences in the heat of vaporization and vaporization temperature of copper and zinc. The electron density estimated using the Stark-broadened transition 4p(2)P(3/2) -> 4s(22)D(5/2) of Cu I (510.5 nm) is about 10 times higher than that for transition 4s5s(3)S(1) -> 4s4p(3)P(2) of Zn I (481.1 nm). The appearance and enhancement of the Cu-2 (A-X) band at lower ambient pressure and formation of nanoparticle clusters have been extensively discussed. Stoichiometric and morphological study of the deposited nanoparticles on carbon tape at different ambient pressure reveals a different percentage composition of copper and of nanoparticles. (C) 2012 Optical Society of America
引用
收藏
页码:B192 / B200
页数:9
相关论文
共 50 条
  • [1] Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy
    Shao, Junfeng
    Guo, Jin
    Wang, Qiuyun
    Chen, Anmin
    Jin, Mingxing
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (07):
  • [2] Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy
    邵俊峰
    郭劲
    王秋云
    陈安民
    金明星
    [J]. Plasma Science and Technology, 2020, (07) : 8 - 14
  • [3] Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy
    邵俊峰
    郭劲
    王秋云
    陈安民
    金明星
    [J]. Plasma Science and Technology., 2020, 22 (07) - 14
  • [4] Plasma properties of laser-ablated strontium target
    Hafeez, S.
    Shaikh, Nek M.
    Rashid, Baber
    Baig, M. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (08)
  • [5] THE PLASMA PROPERTIES OF LASER-ABLATED SIO2
    WOLF, PJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1992, 72 (04) : 1280 - 1289
  • [6] Plasma properties of laser-ablated St target in air
    王象泰
    满宝元
    王公堂
    樊锡君
    王军
    许炳璋
    梅良模
    [J]. Nuclear Science and Techniques, 1996, (02) : 103 - 106
  • [7] Laser-ablated plasma for deposition of aluminum oxide films
    Misra, A
    Thareja, RK
    [J]. APPLIED SURFACE SCIENCE, 1999, 143 (1-4) : 56 - 66
  • [8] Spectroscopic characterization of laser-ablated manganese sulfate plasma
    Salik, M.
    Hanif, M.
    Wang, J.
    Zhang, X. Q.
    [J]. LASER AND PARTICLE BEAMS, 2014, 32 (01) : 137 - 144
  • [9] Plasma properties of a laser-ablated aluminum target in air
    Ying, MJ
    Xia, YY
    Sun, YM
    Zhao, MW
    Ma, YC
    Liu, XD
    Li, YF
    Hou, XY
    [J]. LASER AND PARTICLE BEAMS, 2003, 21 (01) : 97 - 101
  • [10] Reaction of laser-ablated Ni plasma with methanol clusters
    Niu, DM
    Zhang, SD
    Zhang, XY
    Li, HY
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2004, 17 (02) : 116 - 120