Heterochiral DNA Strand-Displacement Circuits

被引:44
|
作者
Kabza, Adam M. [1 ]
Young, Brian E. [1 ]
Sczepanski, Jonathan T. [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
关键词
MAMMALIAN-CELLS; ACID; HYBRIDIZATION; DNAZYME; PNA;
D O I
10.1021/jacs.7b10038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The absence of a straightforward strategy to interface native D-DNA with its enantiomer L-DNA oligonucleotides of opposite chirality are incapable of forming contiguous Watson-Crick base pairs with each other-has enforced a "homochiral" paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for "heterochiral" DNA nanotechnology having fully interfaced D-DNA and L-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal L-DNA, suggesting applications in bioengineering and nano medicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.
引用
收藏
页码:17715 / 17718
页数:4
相关论文
共 50 条
  • [1] Heterochiral DNA strand displacement circuits
    Kabza, Adam
    Young, Brian
    Sczepanski, Jonathan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [2] DNA Strand-Displacement Timer Circuits
    Fern, Joshua
    Scalise, Dominic
    Cangialosi, Angelo
    Howie, Dylan
    Potters, Leo
    Schulman, Rebecca
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (02): : 190 - 193
  • [3] DNA Strand-Displacement Temporal Logic Circuits
    Lapteva, Anna P.
    Sarraf, Namita
    Qian, Lulu
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (27) : 12443 - 12449
  • [4] Heterochiral DNA Strand-Displacement Based on Chimeric D/L-Oligonucleotides
    Young, Brian E.
    Sczepanski, Jonathan T.
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (12): : 2756 - 2759
  • [5] DNA strand-displacement buffers
    Scalise, Dominic
    Schulman, Rebecca
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [6] pH-Controlled Resettable Modular DNA Strand-Displacement Circuits
    Sun, Xiaoyun
    Yao, Dongbao
    Liang, Haojun
    [J]. NANO LETTERS, 2023, 23 (24) : 11540 - 11547
  • [7] Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
    Fern, Joshua
    Schulman, Rebecca
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (09): : 1774 - 1783
  • [8] Mismatches Improve the Performance of Strand-Displacement Nucleic Acid Circuits
    Jiang, Yu Sherry
    Bhadra, Sanchita
    Li, Bingling
    Ellington, Andrew D.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (07) : 1845 - 1848
  • [9] Dynamic DNA nanotechnology using strand-displacement reactions
    Zhang, David Yu
    Seelig, Georg
    [J]. NATURE CHEMISTRY, 2011, 3 (02) : 103 - 113
  • [10] Dynamic DNA nanotechnology using strand-displacement reactions
    Zhang D.Y.
    Seelig G.
    [J]. Nature Chemistry, 2011, 3 (2) : 103 - 113