Brownian Motion Indexed by a Time Scale

被引:17
|
作者
Grow, David [2 ]
Sanyal, Suman [1 ]
机构
[1] Marshall Univ, Dept Math, Huntington, WV 25755 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
关键词
Brownian motion; Kolmogorov-Centsov theorem; Stochastic dynamic equations; Time scales;
D O I
10.1080/07362994.2011.564441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we generalize Wiener's existence result for one-dimensional Brownian motion by constructing a suitable continuous stochastic process where the index set is a time scale. We construct a countable dense subset of a time scale and use it to prove a generalized version of the Kolmogorov-Centsov theorem. As a corollary, we obtain a local Holder-continuity result for the sample paths of generalized Brownian motion indexed by a time scale.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 50 条