Machine Learning Models for Malicious Traffic Detection in IoT Networks/IoT-23 Dataset/

被引:1
|
作者
Oha, Chibueze Victor [1 ]
Farouk, Fathima Shakoora [1 ]
Patel, Pujan Pankaj [1 ]
Meka, Prithvi [1 ]
Nekkanti, Sowmya [1 ]
Nayini, Bhageerath [1 ]
Carvalho, Smit Xavier [1 ]
Desai, Nisarg [1 ]
Patel, Manishkumar [1 ]
Butakov, Sergey [1 ]
机构
[1] Concordia Univ Edmonton, Edmonton, AB, Canada
来源
关键词
Machine Learning; IoT-23; Internet of Things; Supervised learning; TensorFlow;
D O I
10.1007/978-3-030-98978-1_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Connected devices are penetrating markets with an unprecedented speed. Networks that carry Internet of Things (IoT) traffic need highly adaptable tools for traffic analysis to detect and suppress malicious agents. This has prompted researchers to explore the various benefits Machine Learning (ML) has to offer. By developing models to detect certain kinds of malicious traffic accurately, ML approach will allow for better detection capabilities if implemented in an Intrusion Detection System (IDS) or next-generation firewalls. This research paper focuses on harnessing features of ML in exploring the network traffic generated by infected IoT devices. The IoT-23 dataset was used and preprocessed into three different datasets for further exploration using various ML algorithms. This enhances the detection of malicious traffic, thereby improving the security in the IoT ecosystem. The ML algorithms implemented in this paper included: Logistic Regression, Decision Tree, Random Forest Classifier, XGBoost and Artificial Neural Network. This research was able to achieve almost 100% accuracy across all the three sub-datasets.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 50 条
  • [1] A Comprehensive Analysis of Machine Learning-Based Intrusion Detection System for IoT-23 Dataset
    Kim, Yang G.
    Ahmed, Kazi J.
    Lee, Myung J.
    Tsukamoto, Kazuya
    [J]. ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, INCOS-2022, 2022, 527 : 475 - 486
  • [2] Anomaly Detection and Prevention for Smart Industry IoT using the IoT-23 Dataset
    Arfaoui, Bilel
    Mrabet, Hichem
    Jemai, Abderrazak
    [J]. 37TH ANNUAL EUROPEAN SIMULATION AND MODELLING CONFERENCE 2023, ESM 2023, 2023, : 309 - 313
  • [3] Generative Deep Learning to Detect Cyberattacks for the IoT-23 Dataset
    Abdalgawad, N.
    Sajun, A.
    Kaddoura, Y.
    Zualkernan, I. A.
    Aloul, F.
    [J]. IEEE ACCESS, 2022, 10 : 6430 - 6441
  • [4] IoT Malicious Traffic Detection Based on Federated Learning
    Shen, Yi
    Zhang, Yuhan
    Li, Yuwei
    Ding, Wanmeng
    Hu, Miao
    Li, Yang
    Huang, Cheng
    Wang, Jie
    [J]. DIGITAL FORENSICS AND CYBER CRIME, PT 1, ICDF2C 2023, 2024, 570 : 249 - 263
  • [5] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
  • [6] IoT Dataset Validation Using Machine Learning Techniques for Traffic Anomaly Detection
    Vigoya, Laura
    Fernandez, Diego
    Carneiro, Victor
    Novoa, Francisco J.
    [J]. ELECTRONICS, 2021, 10 (22)
  • [7] Feature Entropy Estimation (FEE) for Malicious IoT Traffic and Detection Using Machine Learning
    Diwan, Tarun Dhar
    Choubey, Siddartha
    Hota, H. S.
    Goyal, S. B.
    Jamal, Sajjad Shaukat
    Shukla, Piyush Kumar
    Tiwari, Basant
    [J]. MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [8] CorrAUC: A Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine-Learning Techniques
    Shafiq, Muhammad
    Tian, Zhihong
    Bashir, Ali Kashif
    Du, Xiaojiang
    Guizani, Mohsen
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05): : 3242 - 3254
  • [9] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Asif, Muhammad
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (02):
  • [10] The limitations of unsupervised machine learning for identifying malicious nodes in IoT networks
    Sadek, Fatima Salma
    Abouaissa, Abdelhafid
    Lorenz, Pascal
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1984 - 1989