共 50 条
- [1] A Comprehensive Analysis of Machine Learning-Based Intrusion Detection System for IoT-23 Dataset [J]. ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, INCOS-2022, 2022, 527 : 475 - 486
- [2] Anomaly Detection and Prevention for Smart Industry IoT using the IoT-23 Dataset [J]. 37TH ANNUAL EUROPEAN SIMULATION AND MODELLING CONFERENCE 2023, ESM 2023, 2023, : 309 - 313
- [3] Generative Deep Learning to Detect Cyberattacks for the IoT-23 Dataset [J]. IEEE ACCESS, 2022, 10 : 6430 - 6441
- [4] IoT Malicious Traffic Detection Based on Federated Learning [J]. DIGITAL FORENSICS AND CYBER CRIME, PT 1, ICDF2C 2023, 2024, 570 : 249 - 263
- [5] Detecting malicious IoT traffic using Machine Learning techniques [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
- [8] CorrAUC: A Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine-Learning Techniques [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05): : 3242 - 3254
- [9] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (02):
- [10] The limitations of unsupervised machine learning for identifying malicious nodes in IoT networks [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1984 - 1989