Automatic MR Brain Tumor Image Segmentation

被引:0
|
作者
Lu, Yisu [1 ,2 ]
Chen, Wufan [2 ]
机构
[1] South China Inst Software Engn, Dept Elect Engn, Guangzhou, Guangdong, Peoples R China
[2] Southern Med Univ, Key Lab Med Image Proc, Guangzhou, Guangdong, Peoples R China
关键词
segmentation; Dirichlet process mixtures; anisotropic diffusion; MRF;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional Dirichlet process mixture (MDP) models has the characteristic that the image segmentation can be done without initialization of clustering numbers. For the computing speed of the classical MDP segmentation is jogging, a new kind of nonparametric segmentation (DMMDP algorithm) combined with anisotropic diffusion and Markov Random Fields (MRF) prior was inferred in this paper. The experiment results of menigioma MR images segmentation showed that the properties, such as accuracy and computing speed, of the DMMDP algorithm were significantly greater than the classical MDP model segmentation.
引用
收藏
页码:541 / 544
页数:4
相关论文
共 50 条
  • [1] A statistical framework for automatic brain MR image segmentation
    Zhang, YY
    Brady, M
    Smith, S
    [J]. NEUROIMAGE, 2001, 13 (06) : S292 - S292
  • [2] Full Automatic Framework for Segmentation of MR Brain Image
    Lin, Pan
    Yang, Yong
    Zheng, Chong-Xun
    Gu, Jian-Wen
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (01): : 6 - 11
  • [3] Automatic Brain Tumor Segmentation And Extraction In MR Images
    Sehgal, Aastha
    Goel, Shashwat
    Mangipudi, Parthasarathi
    Mehra, Anu
    Tyagi, Devyani
    [J]. 2016 CONFERENCE ON ADVANCES IN SIGNAL PROCESSING (CASP), 2016, : 104 - 107
  • [4] Automatic Brain Tumor Detection and Segmentation in MR Images
    Zeljkovic, V.
    Druzgalski, C.
    Zhang, Y.
    Zhu, Z.
    Xu, Z.
    Zhang, D.
    Mayorga, P.
    [J]. 2014 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2014,
  • [5] Diagnosis and Segmentation of Brain Tumor from MR Image
    Srinivasan, S. V.
    Narasimhan, K.
    Balasubramaniyam, R.
    Bharadwaj, S. Rishi
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 2, 2015, 325 : 687 - 693
  • [6] Automatic brain MR image segmentation by relative thresholding and morphological image analysis
    Li, Kai
    Malony, Allen D.
    Tucker, Don M.
    [J]. VISAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2006, : 354 - +
  • [7] Enhanced Region Growing for Brain Tumor MR Image Segmentation
    Biratu, Erena Siyoum
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Kebede, Samuel Rahimeto
    Negera, Worku Gachena
    Molla, Hasset Tamirat
    [J]. JOURNAL OF IMAGING, 2021, 7 (02)
  • [8] MMGan: a multimodal MR brain tumor image segmentation method
    Gao, Leiyi
    Li, Jiao
    Zhang, Ruixin
    Bekele, Hailu Hanna
    Wang, Junzhu
    Cheng, Yining
    Deng, Hongxia
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [9] An adaptive spatial clustering method for automatic brain MR image segmentation
    Zhang, Jingdan
    Dai, Daoqing
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (10) : 1373 - 1382