Restoration of polarimetric SAR images using simulated annealing

被引:30
|
作者
Schou, J [1 ]
Skriver, H [1 ]
机构
[1] Tech Univ Denmark, Sect Electromagnet Syst, Dept Orsted DTU, DK-2800 Lyngby, Denmark
来源
关键词
complex Wishart distribution; maximum likelihood estimation (MLE); polarimetry; simulated annealing; speckle filtering; synthetic aperture radar (SAR); unsupervised classification;
D O I
10.1109/36.951091
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Filtering synthethic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented applicable to multilook polarimetric SAR images, resulting in an estimate of the mean covariance matrix rather than the RCS. Small windows are applied in the filtering, and due to the iterative nature of the approach, reasonable estimates of the polarimetric quantities characterizing the distributed targets are obtained while at the same time preserving most of the structures in the image. The algorithm is evaluated using multilook polarimetric L-band data from the Danish airborne EMISAR system, and the impact of the algorithm on the unsupervised H-alpha classification is demonstrated.
引用
收藏
页码:2005 / 2016
页数:12
相关论文
共 50 条
  • [1] Multi-look polarimetric SAR image filtering using simulated annealing
    Schou, J
    Dierking, W
    Skriver, H
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1316 - 1318
  • [2] Extraction of vegetation parameters based on simulated annealing algorithm using polarimetric SAR interferometry data
    Li, XW
    Guo, HD
    Liao, JJ
    Zhen, L
    Wang, CL
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3982 - 3984
  • [3] Measurement of topography using polarimetric SAR images
    Schuler, DL
    Lee, JS
    DeGrandi, G
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (05): : 1266 - 1277
  • [4] Image restoration using chaotic simulated annealing
    Yan, LP
    Wang, LP
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 3060 - 3064
  • [5] Optimal classification of polarimetric SAR images using segmentation
    Lombardo, P
    Oliver, CJ
    [J]. PROCEEDINGS OF THE 2002 IEEE RADAR CONFERENCE, 2002, : 8 - 13
  • [6] LAND COVER IDENTIFICATION USING POLARIMETRIC SAR IMAGES
    Kourgli, A.
    Ouarzeddine, M.
    Oukil, Y.
    Belhadj-Aissa, A.
    [J]. 100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 1, 2010, 38 : 106 - 111
  • [7] Image restoration using modifications of simulated annealing
    Gluhovsky, I
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (04) : 653 - 671
  • [8] URBAN AREAS DETECTION USING POLARIMETRIC SAR IMAGES
    Azmedroub, Boussad
    Ouarzeddine, Mounira
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3227 - 3230
  • [9] Segmentation of polarimetric SAR images
    Lee, JS
    Grunes, MR
    Pottier, E
    Ferro-Famil, L
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 414 - 416
  • [10] POLARIMETRIC DISCRIMINATORS FOR SAR IMAGES
    TOUZI, R
    GOZE, S
    LETOAN, T
    LOPES, A
    MOUGIN, E
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (05): : 973 - 980