Theory of Imprecise Sets: Imprecise Matrix

被引:0
|
作者
Das, Dhruba [1 ]
Baruah, Hemanta K. [2 ]
机构
[1] Gauhati Univ, Dept Stat, Gauhati, India
[2] Bodoland Univ, Kokrajhar, India
来源
关键词
Membership function; Imprecise vector; Membership surface; Distribution function;
D O I
10.1007/s40009-016-0474-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, a method has been developed to construct the membership surfaces of row and column vectors of an imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. Nothing however is available in the literature about the membership surface when an imprecise matrix is defined. In this article, the authors have shown the row and column membership surfaces of imprecise matrix and demonstrated with the help of real life example.
引用
收藏
页码:301 / 305
页数:5
相关论文
共 50 条
  • [1] Theory of Imprecise Sets: Imprecise Matrix
    Dhruba Das
    Hemanta K. Baruah
    [J]. National Academy Science Letters, 2016, 39 : 301 - 305
  • [2] Random sets and imprecise probabilities
    Miranda, Enrique
    Nguyen, Hung T.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 46 (01) : 1 - 2
  • [3] Imprecise credibility theory
    Hong, Liang
    Martin, Ryan
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2022, 16 (01) : 136 - 150
  • [4] Imprecise causality in large data sets
    Mazlack, Lawrence J.
    [J]. 2008 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2008, : 25 - 30
  • [5] Random sets as imprecise random variables
    Miranda, E
    Couso, I
    Gil, P
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 32 - 47
  • [6] Credibility Theory Oriented Sign Test for Imprecise Observations and Imprecise Hypotheses
    Hesamian, Gholamreza
    Taheri, Seyed Mahmood
    [J]. SYNERGIES OF SOFT COMPUTING AND STATISTICS FOR INTELLIGENT DATA ANALYSIS, 2013, 190 : 153 - 163
  • [7] DECISION THEORY WITH IMPRECISE PROBABILITIES
    Aliev, R. A.
    Pedrycz, W.
    Huseynov, O. H.
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2012, 11 (02) : 271 - 306
  • [8] A Decision Theory for Imprecise Probabilities
    Rinard, Susanna
    [J]. PHILOSOPHERS IMPRINT, 2015, 15 (07): : 1 - 16
  • [9] Imprecise tests and imprecise hypotheses
    Darnell, AC
    [J]. SCOTTISH JOURNAL OF POLITICAL ECONOMY, 1997, 44 (03) : 247 - 268
  • [10] Fuzzy sets, imprecise probability, and stochastics in engineering
    Oberguggenberger, M
    Schuëller, GI
    Marti, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (10-11): : 659 - 660