Enhancing the efficiency of quantum annealing via reinforcement: A path-integral Monte Carlo simulation of the quantum reinforcement algorithm

被引:4
|
作者
Ramezanpour, A. [1 ,2 ]
机构
[1] Shiraz Univ, Coll Sci, Phys Dept, Shiraz 71454, Iran
[2] Leiden Univ, Leiden Acad Ctr Drug Res, Fac Math & Nat Sci, NL-2300 Leiden, Netherlands
关键词
COMPUTATION; SYSTEMS; STATES; WALKS;
D O I
10.1103/PhysRevA.98.062309
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The standard quantum annealing algorithm tries to approach the ground state of a classical system by slowly decreasing the hopping rates of a quantum random walk in the configuration space of the problem, where the on-site energies are provided by the classical energy function. In a quantum reinforcement algorithm, the annealing works instead by increasing gradually the strength of the on-site energies according to the probability of finding the walker on each site of the configuration space. Here, by using the path-integral Monte Carlo simulations of the quantum algorithms, we show that annealing via reinforcement can significantly enhance the success probability of the quantum walker. More precisely, we implement a local version of the quantum reinforcement algorithm, where the system wave function is replaced by an approximate wave function using the local expectation values of the system. We use this algorithm to find solutions to a prototypical constraint satisfaction problem (XORSAT) close to the satisfiability to unsatisfiability phase transition. The study is limited to small problem sizes (a few hundreds of variables), nevertheless, the numerical results suggest that quantum reinforcement may provide a useful strategy to deal with other computationally hard problems and larger problem sizes even as a classical optimization algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantum Annealing via Path-Integral Monte Carlo With Data Augmentation
    Hu, Jianchang
    Wang, Yazhen
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 284 - 296
  • [2] Quantum atomic dynamics in amorphous silicon; a path-integral Monte Carlo simulation
    Herrero, CP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (03) : 265 - 274
  • [3] Path-integral quantum Monte Carlo simulation with open-boundary conditions
    Jiang, Zhang
    Smelyanskiy, Vadim N.
    Boixo, Sergio
    Neven, Hartmut
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [4] Path-integral quantum Monte Carlo calculations of light nuclei
    Chen, Rong
    Schmidt, Kevin E.
    PHYSICAL REVIEW C, 2022, 106 (04)
  • [5] Path-Integral Quantum Monte Carlo Techniques for Self-Assembled Quantum Dots
    Matthew Harowitz
    Daejin Shin
    John Shumway
    Journal of Low Temperature Physics, 2005, 140 : 211 - 226
  • [6] Path-integral quantum Monte Carlo techniques for self-assembled quantum dots
    Harowitz, M
    Shin, DJ
    Shumway, J
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 211 - 226
  • [7] Path Integral Quantum Monte Carlo Simulation of a Parabolic Quantum Dot
    Batenipour, N.
    Saghafi, K.
    Moravvej-Farshi, M. K.
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 530 - +
  • [8] Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
    King, Andrew D.
    Raymond, Jack
    Lanting, Trevor
    Isakov, Sergei V.
    Mohseni, Masoud
    Poulin-Lamarre, Gabriel
    Ejtemaee, Sara
    Bernoudy, William
    Ozfidan, Isil
    Smirnov, Anatoly Yu.
    Reis, Mauricio
    Altomare, Fabio
    Babcock, Michael
    Baron, Catia
    Berkley, Andrew J.
    Boothby, Kelly
    Bunyk, Paul I.
    Christiani, Holly
    Enderud, Colin
    Evert, Bram
    Harris, Richard
    Hoskinson, Emile
    Huang, Shuiyuan
    Jooya, Kais
    Khodabandelou, Ali
    Ladizinsky, Nicolas
    Li, Ryan
    Lott, P. Aaron
    MacDonald, Allison J. R.
    Marsden, Danica
    Marsden, Gaelen
    Medina, Teresa
    Molavi, Reza
    Neufeld, Richard
    Norouzpour, Mana
    Oh, Travis
    Pavlov, Igor
    Perminov, Ilya
    Prescott, Thomas
    Rich, Chris
    Sato, Yuki
    Sheldan, Benjamin
    Sterling, George
    Swenson, Loren J.
    Tsai, Nicholas
    Volkmann, Mark H.
    Whittaker, Jed D.
    Wilkinson, Warren
    Yao, Jason
    Neven, Hartmut
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
    Andrew D. King
    Jack Raymond
    Trevor Lanting
    Sergei V. Isakov
    Masoud Mohseni
    Gabriel Poulin-Lamarre
    Sara Ejtemaee
    William Bernoudy
    Isil Ozfidan
    Anatoly Yu. Smirnov
    Mauricio Reis
    Fabio Altomare
    Michael Babcock
    Catia Baron
    Andrew J. Berkley
    Kelly Boothby
    Paul I. Bunyk
    Holly Christiani
    Colin Enderud
    Bram Evert
    Richard Harris
    Emile Hoskinson
    Shuiyuan Huang
    Kais Jooya
    Ali Khodabandelou
    Nicolas Ladizinsky
    Ryan Li
    P. Aaron Lott
    Allison J. R. MacDonald
    Danica Marsden
    Gaelen Marsden
    Teresa Medina
    Reza Molavi
    Richard Neufeld
    Mana Norouzpour
    Travis Oh
    Igor Pavlov
    Ilya Perminov
    Thomas Prescott
    Chris Rich
    Yuki Sato
    Benjamin Sheldan
    George Sterling
    Loren J. Swenson
    Nicholas Tsai
    Mark H. Volkmann
    Jed D. Whittaker
    Warren Wilkinson
    Jason Yao
    Hartmut Neven
    Nature Communications, 12
  • [10] Quantum effects on the elastic properties of cubic boron nitride by path-integral Monte Carlo simulation
    Brito, B. G. A.
    Hai, G. Q.
    Candido, L.
    COMPUTATIONAL CONDENSED MATTER, 2022, 33