Integrable models in nonlinear optics and soliton solutions

被引:10
|
作者
Degasperis, Antonio [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy
关键词
RESONANT INTERACTION; EQUATIONS; EVOLUTION;
D O I
10.1088/1751-8113/43/43/434001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear optics, more than other subjects, has surprisingly produced quite a number of approximate models which are integrable. Here we briefly mention these models with the aim of showing contacts between the mathematical and applicative sides of the theory of integrable dynamical systems. In particular, we illustrate the recent impact of boomeronic-type wave equations on applicative issues in the special context of the resonant interaction of three waves.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Soliton solutions for integrable equations in nonlinear optics: Backlund transformation approach
    Nakkeeran, K
    [J]. NONLINEARITY, 2002, 15 (06) : 1747 - 1753
  • [2] Completely integrable models of nonlinear optics
    Andrey I Maimistov
    [J]. Pramana, 2001, 57 : 953 - 968
  • [3] Completely integrable models of nonlinear optics
    Maimistov, AI
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6): : 953 - 968
  • [4] Soliton solutions for a (3 + 1)-dimensional nonlinear integrable equation
    Shaofu Wang
    [J]. Optical and Quantum Electronics, 2023, 55
  • [5] Soliton solutions of an integrable nonlinear Schrodinger equation with quintic terms
    Chowdury, A.
    Kedziora, D. J.
    Ankiewicz, A.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2014, 90 (03)
  • [6] On Tzitzeica type nonlinear equations for multiple soliton solutions in nonlinear optics
    Rao, Yongsheng
    Zafar, Asim
    Korkmaz, Alper
    Fahad, Asfand
    Qureshi, Muhammad Imran
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6580 - 6593
  • [7] INTEGRABLE NONLOCAL NONLINEAR SCHRÖDINGER HIERARCHIES OF TYPE (-?*,?) AND SOLITON SOLUTIONS
    Ma, Wen-xiu
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (01) : 19 - 36
  • [8] Soliton solutions for a (3+1)-dimensional nonlinear integrable equation
    Wang, Shaofu
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (13)
  • [9] Soliton solutions to constrained nonlocal integrable nonlinear Schrodinger hierarchies of type (-λ,λ)
    Ma, Wen-Xiu
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (06)
  • [10] Soliton interactions of integrable models
    Ruan, HY
    Chen, YX
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 17 (05) : 929 - 939