Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis

被引:10
|
作者
Stadlthanner, K. [1 ]
Lutter, D. [1 ]
Theis, F. J. [1 ]
Lang, E. W. [1 ]
Tome, A. M. [2 ]
Georgieva, P. [2 ]
Puntonet, C. G. [3 ]
机构
[1] Univ Regensburg, Inst Biophys, D-93040 Regensburg, Germany
[2] Univ Aveiro, IEETA, DETI, P-3810193 Aveiro, Portugal
[3] Univ Granada, DATC, E-18371 Granada, Spain
关键词
D O I
10.1109/IJCNN.2007.4370971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. Gene expression profiles naturally conform to assumptions about data formats raised by NMF However, it is known not to lead to unique results concerning the component signals extracted. In this paper we consider an extension of the NMF algorithm which provides unique solutions whenever the underlying component signals are sufficiently sparse. A new sparseness measure is proposed most appropriate to suitably transformed gene expression profiles. The resulting fitness function is discontinuous and exhibits many local minima, hence we use a genetic algorithm for its optimization. The algorithm is applied to toy data to investigate its properties as well as to a microarray data set related to Pseudo-Xanthoma Elasticum (PXE).
引用
收藏
页码:294 / +
页数:2
相关论文
共 50 条
  • [1] Sparse nonnegative matrix factorization applied to microarray data sets
    Stadlthanner, K
    Theis, FJ
    Lang, EW
    Tomé, AM
    Puntonet, CG
    Vilda, PG
    Langmann, T
    Schmitz, G
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 254 - 261
  • [2] DISCRIMINANT SPARSE NONNEGATIVE MATRIX FACTORIZATION
    Zhi, Ruicong
    Ruan, Qiuqi
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 570 - 573
  • [3] Sparse Deep Nonnegative Matrix Factorization
    Guo, Zhenxing
    Zhang, Shihua
    [J]. BIG DATA MINING AND ANALYTICS, 2020, 3 (01): : 13 - 28
  • [4] Binary Sparse Nonnegative Matrix Factorization
    Yuan, Yuan
    Li, Xuelong
    Pang, Yanwei
    Lu, Xin
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2009, 19 (05) : 772 - 777
  • [5] Sparse Separable Nonnegative Matrix Factorization
    Nadisic, Nicolas
    Vandaele, Arnaud
    Cohen, Jeremy E.
    Gillis, Nicolas
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 335 - 350
  • [6] Extended sparse nonnegative matrix factorization
    Stadlthanner, K
    Theis, FJ
    Puntonet, CG
    Lang, EW
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 249 - 256
  • [7] Sparse Deep Nonnegative Matrix Factorization
    Zhenxing Guo
    Shihua Zhang
    [J]. Big Data Mining and Analytics, 2020, 3 (01) : 13 - 28
  • [8] Algorithms for Orthogonal Nonnegative Matrix Factorization
    Choi, Seungjin
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1828 - 1832
  • [9] Algorithms for Nonnegative Matrix Factorization with the β-Divergence
    Fevotte, Cedric
    Idier, Jerome
    [J]. NEURAL COMPUTATION, 2011, 23 (09) : 2421 - 2456
  • [10] Sparse Nonnegative Matrix Factorization with the Elastic Net
    Liu, Weixiang
    Zheng, Songfeng
    Jia, Sen
    Shen, Linlin
    Fu, Xianghua
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 265 - 268