Generalised Seiberg-Witten equations and almost-Hermitian geometry

被引:1
|
作者
Thakre, Varun [1 ]
机构
[1] Int Ctr Theoret Sci ICTS TIFR, Hesaraghatta Hobli 560089, Bengaluru, India
关键词
Spinor; Four-manifold; HyperKahler manifolds; Generalised Seiberg-Witten; Almost-complex geometry;
D O I
10.1016/j.geomphys.2018.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a generalisation of the Seiberg-Witten equations, replacing the spinor representation with a hyperKahler manifold equipped with certain symmetries. Central to this is the construction of a (non-linear) Dirac operator acting on the sections of the non-linear fibre-bundle. For hyperKahler manifolds admitting a hyperKahler potential, we derive a transformation formula for the Dirac operator under the conformal change of metric on the base manifold. As an application, we show that when the hyperKahler manifold is of dimension four, then, away from a singular set, the equations can be expressed as a second order PDE in terms of almost-complex structure on the base manifold, and a conformal factor. This extends a result of Donaldson to generalised Seiberg-Witten equations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 50 条
  • [1] The Seiberg-Witten equations on Hermitian surfaces
    Lupascu, P
    [J]. MATHEMATISCHE NACHRICHTEN, 2002, 242 : 132 - 147
  • [2] The geometry and physics of the Seiberg-Witten equations
    Wu, SY
    [J]. GEOMETRIC ANALYSIS AND APPLICATIONS TO QUANTUM FIELD THEORY, 2002, 205 : 157 - 203
  • [3] ALMOST-HERMITIAN GEOMETRY
    FALCITELLI, M
    FARINOLA, A
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (03) : 259 - 282
  • [4] On the quantization of Seiberg-Witten geometry
    Nathan Haouzi
    Jihwan Oh
    [J]. Journal of High Energy Physics, 2021
  • [5] On the quantization of Seiberg-Witten geometry
    Haouzi, Nathan
    Oh, Jihwan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [6] On a system of Seiberg-Witten equations
    Massamba, F
    Thompson, G
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) : 643 - 665
  • [7] Defects and quantum Seiberg-Witten geometry
    Mathew Bullimore
    Hee-Cheol Kim
    Peter Koroteev
    [J]. Journal of High Energy Physics, 2015
  • [8] Defects and quantum Seiberg-Witten geometry
    Bullimore, Mathew
    Kim, Hee-Cheol
    Koroteev, Peter
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05): : 1 - 79
  • [9] WDVV equations and Seiberg-Witten theory
    Mironov, A
    [J]. INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [10] Seiberg-Witten invariants and vortex equations
    Garcia-Prada, O
    [J]. SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 885 - 934