The Selective Traveling Salesman Problem (STSP) is defined on a graph in which profits are associated with vertices and costs are associated with edges. Some vertices are compulsory. The aim is to construct a tour of maximal profit including all compulsory vertices and whose cost does not exceed a preset constant. We developed several classes of valid inequalities for the symmetric STSP and used them in a branch-and-cut algorithm. Depending on problem parameters, the proposed algorithm can solve instances involving up to 300 vertices. (C) 1998 John Wiley & Sons, Inc.
机构:
Univ Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, FranceUniv Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, France
Vo, Thi Quynh Trang
Baiou, Mourad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, FranceUniv Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, France
Baiou, Mourad
Nguyen, Viet Hung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, FranceUniv Clermont Auvergne, INP Clermont Auvergne, Mines St Etienne, UMR 6158 LIMOS,CNRS, 1 Rue Chebarde, Aubiere, France