Evolutionary Techniques for Mobile Robot Navigation

被引:0
|
作者
Yun, Soh Chin [1 ]
Parasuraman, S. [1 ]
Ganapathy, Velappa
机构
[1] Monash Univ, Sch Engn, Bandar Sunway 46150, Malaysia
关键词
Genetic Algorithm (GA); Path Planning; Genetic Controller; Goal Oriented Path Planning Algorithm (GOPPA); Team AmigoBot (TM) robot and MATLAB;
D O I
10.4028/www.scientific.net/AMR.433-440.6646
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Current research trend in mobile robot is to build intelligent and autonomous systems that enables mobile robot to plan its motion in static and dynamic environment. In this paper, Genetic Algorithm (GA) is utilized to come out with an algorithm that enables the mobile robot to move from the starting position to the desired goal without colliding with any of the obstacles in the environment. The proposed navigation technique is capable of re-planning new optimum collision free path in the event of mobile robot encountering dynamic obstacles. The method is verified using MATLAB simulation and validated by Team AmigoBot (TM) robot. The results obtained from MATLAB simulation and real time implementation are discussed at the end of the paper.
引用
收藏
页码:6646 / 6651
页数:6
相关论文
共 50 条
  • [1] Probabilistic techniques for mobile robot navigation
    Burgard, W
    [J]. SPATIAL INFORMATION THEORY, PROCEEDINGS, 2005, 3693 : 491 - 491
  • [2] Study on mobile robot navigation techniques
    Ibrahim, MY
    Fernandes, A
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), VOLS. 1- 3, 2004, : 230 - 236
  • [3] Probabilistic Techniques for Mobile Robot Navigation
    Burgard, Wolfram
    [J]. 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 3 - 3
  • [4] Evolutionary approach to navigation learning in autonomous mobile robot
    Wang, Fei
    Kamano, Takuya
    Yasuno, Takashi
    Harada, Hironobu
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 268 - 270
  • [5] Learning performance in evolutionary behavior based mobile robot navigation
    Arredondo, Tomas V.
    Freund, Wolfgang
    Munoz, Cesar
    Quiros, Fernando
    [J]. MICAI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2007, 4827 : 811 - +
  • [6] Entropy based diversity measures in evolutionary mobile robot navigation
    Arredondo, Tomas
    Freund, Wolfgang
    Munoz, Cesar
    [J]. NEW FRONTIERS IN APPLIED ARTIFICIAL INTELLIGENCE, 2008, 5027 : 129 - 138
  • [7] Object Detection Techniques Applied on Mobile Robot Semantic Navigation
    Astua, Carlos
    Barber, Ramon
    Crespo, Jonathan
    Jardon, Alberto
    [J]. SENSORS, 2014, 14 (04) : 6734 - +
  • [8] Predictive mobile robot navigation using soft computing techniques
    Gómez-Ortega, J
    Ramírez, DR
    Limón, D
    Camacho, EF
    [J]. INTELLIGENT TECHNIQUES AND SOFT COMPUTING IN NUCLEAR SCIENCE AND ENGINEERING, 2000, : 335 - 342
  • [9] Performance of optical flow techniques for indoor navigation with a mobile robot
    McCarthy, C
    Barnes, N
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 5093 - 5098
  • [10] Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation
    Fernandez-Leon, Jose A.
    Acosta, Gerardo G.
    Mayosky, Miguel A.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (04) : 411 - 419