Spatial information in large-scale neural recordings

被引:4
|
作者
Cybulski, Thaddeus R. [1 ]
Glaser, Joshua I. [1 ]
Marblestone, Adam H. [2 ,3 ]
Zamft, Bradley M. [4 ]
Boyden, Edward S. [5 ,6 ,7 ]
Church, George M. [2 ,3 ,4 ]
Kording, Konrad P. [1 ,8 ,9 ]
机构
[1] Northwestern Univ, Rehabil Inst Chicago, Dept Phys Med & Rehabil, Chicago, IL 60611 USA
[2] Harvard Univ, Biophys Program, Boston, MA 02115 USA
[3] Harvard Univ, Wyss Inst, Boston, MA 02115 USA
[4] Harvard Univ, Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[5] MIT, Media Lab, Cambridge, MA 02139 USA
[6] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[7] MIT, McGovern Inst, Cambridge, MA 02139 USA
[8] Northwestern Univ, Dept Physiol, Chicago, IL 60611 USA
[9] Northwestern Univ, Dept Appl Math, Chicago, IL 60611 USA
基金
美国国家科学基金会;
关键词
neural recording; fisher information; resolution; technology design; optics; extracellular recording; electrical recording; statistics; FUNCTIONAL-ORGANIZATION; LOWER BOUNDS; HUMAN BRAIN; RESOLUTION; LOCALIZATION; 3D; MICROSCOPY; SUPERRESOLUTION; SCATTERING; CELLS;
D O I
10.3389/fncom.2014.00172
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To record from a given neuron, a recording technology must be able to separate the activity of that neuron from the activity of its neighbors. Here, we develop a Fisher information based framework to determine the conditions under which this is feasible for a given technology. This framework combines measurable point spread functions with measurable noise distributions to produce theoretical bounds on the precision with which a recording technology can localize neural activities. If there is sufficient information to uniquely localize neural activities, then a technology will, from an information theoretic perspective, be able to record from these neurons. We (1) describe this framework, and (2) demonstrate its application in model experiments. This method generalizes to many recording devices that resolve objects in space and should be useful in the design of next-generation scalable neural recording systems.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Dimensionality reduction for large-scale neural recordings
    Cunningham, John P.
    Yu, Byron M.
    [J]. NATURE NEUROSCIENCE, 2014, 17 (11) : 1500 - 1509
  • [2] Dimensionality reduction for large-scale neural recordings
    John P Cunningham
    Byron M Yu
    [J]. Nature Neuroscience, 2014, 17 : 1500 - 1509
  • [3] t-SNE Visualization of Large-Scale Neural Recordings
    Dimitriadis, George
    Neto, Joana P.
    Kampff, Adam R.
    [J]. NEURAL COMPUTATION, 2018, 30 (07) : 1750 - 1774
  • [4] Large-scale recordings for drug screening in neural circuit systems
    Ikegaya, Yuji
    [J]. YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2008, 128 (09): : 1251 - 1257
  • [5] Building population models for large-scale neural recordings: Opportunities and pitfalls
    Hurwitz, Cole
    Kudryashova, Nina
    Onken, Arno
    Hennig, Matthias H.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2021, 70 : 64 - 73
  • [6] Exoskeleton empowers large-scale neural recordings in freely roaming mice
    Kodandaramaiah, Suhasa B.
    Beckerle, Travis
    [J]. NATURE METHODS, 2024,
  • [7] Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
    Brunton, Bingni W.
    Johnson, Lise A.
    Ojemann, Jeffrey G.
    Kutz, J. Nathan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 258 : 1 - 15
  • [8] LARGE-SCALE HANDEL + RECENT RECORDINGS
    SADIE, S
    [J]. MUSICAL TIMES, 1986, 127 (1722): : 444 - 444
  • [9] Large-scale neural recordings call for new insights to link brain and behavior
    Anne E. Urai
    Brent Doiron
    Andrew M. Leifer
    Anne K. Churchland
    [J]. Nature Neuroscience, 2022, 25 : 11 - 19
  • [10] Large-scale neural recordings call for new insights to link brain and behavior
    Urai, Anne E.
    Doiron, Brent
    Leifer, Andrew M.
    Churchland, Anne K.
    [J]. NATURE NEUROSCIENCE, 2022, 25 (01) : 11 - 19