Estimating the area of extreme inclusions in Reissner-Mindlin plates

被引:0
|
作者
Morassi, Antonino [1 ]
Rosset, Edi [2 ]
机构
[1] Univ Udine, Dipartimento Politecn Ingn & Architettura, Udine, Italy
[2] Univ Trieste, Dipartimento Matemat & Geosci, Trieste, Italy
关键词
G; Alessandrini; Inverse problems; Reissner-Mindlin elastic plates; size estimates; cavities; rigid inclusions; INVERSE CONDUCTIVITY PROBLEM; KORN INEQUALITY; BOUNDS; SIZE; CAVITIES;
D O I
10.1080/00036811.2020.1742885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive upper and lower estimates of the area of unknown defects in the form of either cavities or rigid inclusions in Mindlin-Reissner elastic plates in terms of the difference of the works exerted by boundary loads on the defected and on the reference plate. It turns out that the upper estimates depend linearly on , whereas the lower ones depend quadratically on . These results continue a line of research concerning size estimates of extreme inclusions in electric conductors, elastic bodies and plates.
引用
收藏
页码:3612 / 3635
页数:24
相关论文
共 50 条