Analysis of hazardous chemicals by "stand alone" drift tube ion mobility spectrometry: a review

被引:35
|
作者
Armenta, S. [1 ]
Esteve-Turrillas, F. A. [1 ]
Alcala, M. [2 ]
机构
[1] Univ Valencia, Analyt Chem Dept, 50th Dr Moliner St, E-46100 Burjassot, Spain
[2] Univ Autonoma Barcelona, Dept Chem, Fac Sci, E-08193 Barcelona, Spain
关键词
SOLID-PHASE MICROEXTRACTION; CORONA DISCHARGE IONIZATION; TIME-OF-FLIGHT; POLYCYCLIC AROMATIC-HYDROCARBONS; BAR SORPTIVE EXTRACTION; THERMAL-DESORPTION; ON-SITE; PSYCHOACTIVE SUBSTANCES; LASER-DESORPTION; EXPLOSIVES DETECTION;
D O I
10.1039/c9ay02268f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ion mobility spectrometry (IMS) is a widely used technique based on gas phase ion separation under an electric field by differences in ion mobilities. In the last decade, IMS techniques have received increased attention due to their high operational speed and sensitivity. Currently, there are different IMS devices focused on solving different analytical performances, mainly based on linear drift tube (DT IMS), traveling wave, and field asymmetric waveform ion mobility spectrometers. In this review we summarize the main applications of DT-IMS devices for the determination of semi-volatile hazardous chemicals such as: illegal drugs, pesticides, explosives, chemical warfare agents, and others, in different matrices, in order to provide a detailed view of the analytical features of the technique.
引用
收藏
页码:1163 / 1181
页数:19
相关论文
共 50 条
  • [1] Planar drift tube for ion mobility spectrometry
    Eiceman, Gary A.
    Schmidt, Hartwig
    Rodriguez, Jaime E.
    White, Corey R.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2007, 35 (04) : 365 - 383
  • [2] Direct Analysis in Real Time Coupled to Multiplexed Drift Tube Ion Mobility Spectrometry for Detecting Toxic Chemicals
    Harris, Glenn A.
    Kwasnik, Mark
    Fernandez, Facundo M.
    ANALYTICAL CHEMISTRY, 2011, 83 (06) : 1908 - 1915
  • [3] On the separation of enantiomers by drift tube ion mobility spectrometry
    Fernandez-Maestre, Roberto
    Doerr, Markus
    ANALYTICAL METHODS, 2022, 14 (31) : 3011 - 3020
  • [4] Electric Modeling of Charged Particles Trajectories in the Drift Tube of Ion Mobility Spectrometer for Hazardous Industrial Chemicals Detection
    Samotaev, Nikolay
    Pershenkov, Vecheslav
    Belyakov, Vladimir
    Vasilyev, Valeriy
    Golovin, Anatoliy
    Ivanov, Igor
    Malkin, Evgeniy
    Gromov, Evgeniy
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 436 - 439
  • [5] Ion Trapping for Ion Mobility Spectrometry Measurements in a Cyclical Drift Tube
    Glaskin, Rebecca S.
    Ewing, Michael A.
    Clemmer, David E.
    ANALYTICAL CHEMISTRY, 2013, 85 (15) : 7003 - 7008
  • [6] Analysis of heterogeneous uptake by nanoparticles via differential mobility analysis-drift tube ion mobility spectrometry
    Oberreit, Derek R.
    McMurry, Peter H.
    Hogan, Christopher J., Jr.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (15) : 6968 - 6979
  • [7] Analysis of a drift tube at ambient pressure: Models and precise measurements in ion mobility spectrometry
    Eiceman, GA
    Nazarov, EG
    Rodriguez, JE
    Stone, JA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09): : 3610 - 3621
  • [8] Study of Coulombic broadening in stand-alone ion mobility spectrometry
    Wang, Weiguo
    Huang, Wei
    Chen, Chuang
    Cang, Huaiwen
    Li, Haiyang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (03):
  • [9] Comparison of CCS Values Determined by Traveling Wave Ion Mobility Mass Spectrometry and Drift Tube Ion Mobility Mass Spectrometry
    Hinnenkamp, Vanessa
    Klein, Julia
    Meckelmann, Sven W.
    Balsaa, Peter
    Schmidt, Torsten C.
    Schmitz, Oliver J.
    ANALYTICAL CHEMISTRY, 2018, 90 (20) : 12042 - 12050
  • [10] Flowing atmospheric-pressure afterglow drift tube ion mobility spectrometry
    Latif, Mohsen
    Zhang, Dong
    Gamez, Gerardo
    ANALYTICA CHIMICA ACTA, 2021, 1163