The stability of some generalizations of the quadratic and Wilson's functional equations

被引:0
|
作者
Lukasik, Radoslaw [1 ]
机构
[1] Univ Silesia, Inst Math, Ul Bankowa 14, PL-40007 Katowice, Poland
关键词
Quadratic functional equation; Wilson functional equation; stability; ULAM-RASSIAS STABILITY; ADDITIVE MAPPINGS; ALGEBRAS; SPACES;
D O I
10.1515/gmj-2016-0046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a stability result for the functional equation 1/L Sigma(lambda is an element of K<bold>) F</bold>( x + lambda y) = alpha(y)G(x) + H(y), x, y <bold> is an element of S</bold>, for the functions F, G, H: S -> X, alpha : S -> K, where (S, +) is an abelian semigroup, K is a finite subgroup of the automorphism group of S, L := |K| and (X, parallel to . parallel to) is the Banach space over a field K <bold> is an element of </bold>{R, C}.
引用
收藏
页码:545 / 568
页数:24
相关论文
共 50 条