Interaction effects on quantum Hall transitions: Dynamical scaling laws and superuniversality

被引:3
|
作者
Kumar, Prashant [1 ,2 ]
Nosov, P. A. [1 ]
Raghu, S. [1 ,3 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
关键词
CONDUCTIVITY; DIMENSIONS;
D O I
10.1103/PhysRevResearch.4.033146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the role of electron-electron interactions near integer and abelian fractional quantum Hall (QH) transitions using composite fermion (CF) representations. Interaction effects are encapsulated in CF theories as gauge fluctuations. Without gauge fluctuations, the CF system realizes a 'dual' representation of the noninteracting QH transition. With gauge fluctuations, the system is governed by a gauged nonlinear sigma model (NLSM) with a theta term. While the transition is described by a strong-coupling fixed point of the NLSM, we are nevertheless able to deduce two of its properties. With 1/r interactions, (1) the transition has a dynamical exponent z = 1, and (2) all transitions are "superuniversal": fractional and integer QH transitions are in the same universality class. With short-range interactions, z = 2 and the fate of superuniversality remains unclear.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scaling in fractional quantum Hall transitions
    Machida, T
    Ishizuka, S
    Komiyama, S
    Muraki, K
    Hirayama, Y
    PHYSICA B-CONDENSED MATTER, 2001, 298 (1-4) : 182 - 186
  • [2] Multifractality and Scaling at the Quantum Hall transitions
    Evers, F.
    Mildenberger, A.
    Mirlin, A. D.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [3] Dynamical scaling of the quantum Hall plateau transition
    Hohls, F
    Zeitler, U
    Haug, RJ
    Meisels, R
    Dybko, K
    Kuchar, F
    PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [4] Quantum scaling laws in the onset of dynamical delocalization
    Chabe, Julien
    Lignier, Hans
    Cavalcante, Hugo L. D. S.
    Delande, Dominique
    Szriftgiser, Pascal
    Garreau, Jean Claude
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [5] Scaling and Universality at Dynamical Quantum Phase Transitions
    Heyl, Markus
    PHYSICAL REVIEW LETTERS, 2015, 115 (14)
  • [6] Electron-electron interactions, quantum Coulomb gap, and dynamical scaling near integer quantum Hall transitions
    Wang, ZQ
    Xiong, SH
    PHYSICAL REVIEW B, 2002, 65 (19) : 1 - 24
  • [7] Dynamical scaling analysis of the optical Hall conductivity in the quantum Hall regime
    Morimoto, Takahiro
    Avishai, Yshai
    Aoki, Hideo
    PHYSICAL REVIEW B, 2010, 82 (08):
  • [8] Form of scaling function in quantum Hall plateau transitions
    Tao, Tu
    Yong-Jie, Zhao
    Guo-Ping, Guo
    Xiao-Jie, Hao
    Guang-Can, Guo
    CHINESE PHYSICS LETTERS, 2007, 24 (05) : 1346 - 1349
  • [9] Dynamical competition between quantum Hall and quantum spin Hall effects
    Quelle, A.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2014, 90 (19):
  • [10] A generalized treatment of the dynamical scaling of the quantum Hall plateau transition
    Hohls, F
    Zeitler, U
    Haug, RJ
    Meisels, R
    Dybko, K
    Kuchar, F
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 16 (01): : 10 - 16