Fast-AT: Fast Automatic Thumbnail Generation using Deep Neural Networks

被引:22
|
作者
Esmaeili, Seyed A. [1 ]
Singh, Bharat [1 ]
Davis, Larry S. [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
关键词
D O I
10.1109/CVPR.2017.445
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fast-AT is an automatic thumbnail generation system based on deep neural networks. It is a fully-convolutional deep neural network, which learns specific filters for thumbnails of different sizes and aspect ratios. During inference, the appropriate filter is selected depending on the dimensions of the target thumbnail. Unlike most previous work, Fast-AT does not utilize saliency but addresses the problem directly. In addition, it eliminates the need to conduct region search on the saliency map. The model generalizes to thumbnails of different sizes including those with extreme aspect ratios and can generate thumbnails in real time. A data set of more than 70,000 thumbnail annotations was collected to train Fast-AT. We show competitive results in comparison to existing techniques.
引用
收藏
页码:4178 / 4186
页数:9
相关论文
共 50 条
  • [1] Fast Terrain-Adaptive Motion Generation using Deep Neural Networks
    Yu, Moonwon
    Kwon, Byungjun
    Kim, Jongmin
    Kang, Shinjin
    Jang, Hanyoung
    [J]. SA'19: SIGGRAPH ASIA 2019 TECHNICAL BRIEFS, 2019, : 57 - 60
  • [2] Fast Generation of Optimal Asteroid Landing Trajectories Using Deep Neural Networks
    Cheng, Lin
    Wang, Zhenbo
    Jiang, Fanghua
    Li, Junfeng
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 2642 - 2655
  • [3] Deep Reinforcement Learning for Automatic Thumbnail Generation
    Li, Zhuopeng
    Zhang, Xiaoyan
    [J]. MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 41 - 53
  • [4] Fast and Deep Graph Neural Networks
    Gallicchio, Claudio
    Micheli, Alessio
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3898 - 3905
  • [5] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    [J]. NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [6] Automatic Tool for Fast Generation of Custom Convolutional Neural Networks Accelerators for FPGA
    Rivera-Acosta, Miguel
    Ortega-Cisneros, Susana
    Rivera, Jorge
    [J]. ELECTRONICS, 2019, 8 (06)
  • [7] Fast animal pose estimation using deep neural networks
    Talmo D. Pereira
    Diego E. Aldarondo
    Lindsay Willmore
    Mikhail Kislin
    Samuel S.-H. Wang
    Mala Murthy
    Joshua W. Shaevitz
    [J]. Nature Methods, 2019, 16 : 117 - 125
  • [8] Fast animal pose estimation using deep neural networks
    Pereira, Talmo D.
    Aldarondo, Diego E.
    Willmore, Lindsay
    Kislin, Mikhail
    Wang, Samuel S. -H.
    Murthy, Mala
    Shaevitz, Joshua W.
    [J]. NATURE METHODS, 2019, 16 (01) : 117 - +
  • [9] Fast Depth Reconstruction Using Deep Convolutional Neural Networks
    Maslov, Dmitrii
    Makarov, Ilya
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 456 - 467
  • [10] Automatic Chinese Meme Generation Using Deep Neural Networks
    Lin, Wang
    Qimeng, Zhang
    Kim, Youngbin
    Wu, Ruizheng
    Jin, Hongyu
    Deng, Haoke
    Luo, Pengchu
    Kim, Chang-Hun
    [J]. IEEE ACCESS, 2021, 9 : 152657 - 152667