ON THE GLOBAL EXISTENCE TO HALL-MHD SYSTEM

被引:0
|
作者
Liu, Lvqiao [1 ]
机构
[1] Anhui Normal Univ, Dept Math & Stat, Wuhu 241001, Peoples R China
来源
关键词
Hall-MHD; Lei-Lin spaces; Global existence; BLOW-UP CRITERIA; WELL-POSEDNESS; DECAY; WELLPOSEDNESS; STABILITY;
D O I
10.3934/dcdsb.2022044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the well-posedness of Hall-magnetohydrodynamics system. By using a new current function J= del x B as an additional unknown. The mild solution of Hall-MHD exists globally in the nonhomogeneous Lei-Lin space setting provided that the initial data satisfies parallel to u(0)parallel to(X-1)parallel to B-0 parallel to(X-1) + parallel to J(0)parallel to(X)(-1) < min {mu/2,nu/2}.
引用
收藏
页码:7301 / 7314
页数:14
相关论文
共 50 条
  • [1] EXISTENCE AND STABILITY OF GLOBAL LARGE STRONG SOLUTIONS FOR THE HALL-MHD SYSTEM
    Benvenutti, Maicon J.
    Ferreira, Lucas C. F.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (9-10) : 977 - 1000
  • [2] On global existence, energy decay and blow-up criteria for the Hall-MHD system
    Wan, Renhui
    Zhou, Yong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 5982 - 6008
  • [3] Global existence and asymptotic behavior for the 3D generalized Hall-MHD system
    Wu, Xing
    Yu, Yanghai
    Tang, Yanbin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 41 - 50
  • [4] Global Small Solutions to the Inviscid Hall-MHD System
    Xiaoping Zhai
    Yongsheng Li
    Yajuan Zhao
    [J]. Journal of Mathematical Fluid Mechanics, 2021, 23
  • [5] Global Small Solutions to the Inviscid Hall-MHD System
    Zhai, Xiaoping
    Li, Yongsheng
    Zhao, Yajuan
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
  • [6] Global Existence of Smooth Solutions to Three Dimensional Hall-MHD System with Mixed Partial Viscosity
    Wang Yuzhu
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (01): : 1 - 13
  • [7] Global wellposedness for Hall-MHD equations
    Kwak, Minkyu
    Lkhagvasuren, Bataa
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 104 - 117
  • [8] On the global well-posedness for the compressible Hall-MHD system
    Han, Bin
    Hu, Ke
    Lai, Ning-An
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [9] GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS
    Gao, Jincheng
    Yao, Zheng-An
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06): : 3077 - 3106
  • [10] Steady states of Hall-MHD system
    Zeng, Yong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) : 757 - 793