First order optimality conditions for generalized semi-infinite programming problems

被引:28
|
作者
Ye, J. J. [1 ]
Wu, S. Y. [2 ,3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Natl Cheng Kung Univ, Inst Appl Math, Tainan 700, Taiwan
[3] Natl Ctr Theoret Sci, Tainan, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
necessary optimality conditions; constraint qualifications; nonsmooth analysis; value function; generalized semi-infinite programming problems;
D O I
10.1007/s10957-008-9352-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study first-order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various well-known constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs takes a weaker form unless a certain constraint qualification is satisfied. In the completely convex case where the objective of the lower-level problem is concave and the constraint functions are quasiconvex, we show that the KKT condition takes a sharper form.
引用
收藏
页码:419 / 434
页数:16
相关论文
共 50 条