A novel method to identify influential nodes in complex networks

被引:11
|
作者
Yang, Yuanzhi [1 ]
Yu, Lei [1 ]
Wang, Xing [1 ]
Chen, Siyi [1 ]
Chen, You [1 ]
Zhou, Yipeng [1 ]
机构
[1] Air Force Engn Univ, Aeronaut Engn Coll, Xian 710038, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Complex networks; influential nodes; centrality measure; improved TOPSIS; the SI model; COMMUNITY STRUCTURE; CENTRALITY; IDENTIFICATION; SYSTEMS; TOPSIS; MODEL; FLOW;
D O I
10.1142/S0129183120500229
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identifying influential nodes in complex networks continues to be an open and vital issue, which is of great significance to the robustness and vulnerability of networks. In order to accurately identify influential nodes in complex networks and avoid the deviation in the evaluation of node influence by single measure, a novel method based on improved Technology for Order Preference by Similarity to an Ideal Solution (TOPSIS) is proposed to integrate multiple measures and identify influential nodes. Our method takes into account degree centrality (DC), closeness centrality (CC) and betweenness centrality (BC), and uses the information of the decision matrix to objectively assign weight to each measure, and takes the closeness degree from each node to be the ideal solution as the basis for comprehensive evaluation. At last, four experiments based on the Susceptible-Infected (SI) model are carried out, and the superiority of our method can be demonstrated.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Evidential method to identify influential nodes in complex networks
    Mo, Hongming
    Gao, Cai
    Deng, Yong
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2015, 26 (02) : 381 - 387
  • [2] Evidential method to identify influential nodes in complex networks
    Hongming Mo
    Cai Gao
    Yong Deng
    [J]. Journal of Systems Engineering and Electronics, 2015, 26 (02) : 381 - 387
  • [3] A novel method to identify influential nodes in complex networks based on gravity centrality
    Zhang, Qinyu
    Shuai, Bin
    Lu, Min
    [J]. INFORMATION SCIENCES, 2022, 618 : 98 - 117
  • [4] A novel measure to identify influential nodes in complex networks based on network global efficiency
    Zhang, Tingping
    Fang, Bin
    Liang, Xinyu
    [J]. MODERN PHYSICS LETTERS B, 2015, 29 (28):
  • [5] Identify influential nodes in complex networks based on Modified TOPSIS
    WuXuguang
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1474 - 1479
  • [6] A method based on k-shell decomposition to identify influential nodes in complex networks
    Bakhtyar Rafeeq HamaKarim
    Rojiar Pir Mohammadiani
    Amir Sheikhahmadi
    Bryar Rafiq Hamakarim
    Mehri Bahrami
    [J]. The Journal of Supercomputing, 2023, 79 : 15597 - 15622
  • [7] A modified weighted TOPSIS to identify influential nodes in complex networks
    Hu, Jiantao
    Du, Yuxian
    Mo, Hongming
    Wei, Daijun
    Deng, Yong
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 73 - 85
  • [8] A method based on k-shell decomposition to identify influential nodes in complex networks
    HamaKarim, Bakhtyar Rafeeq
    Mohammadiani, Rojiar Pir
    Sheikhahmadi, Amir
    Hamakarim, Bryar Rafiq
    Bahrami, Mehri
    [J]. JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 15597 - 15622
  • [9] A novel method for identifying influential nodes in complex networks based on multiple attributes
    Liu, Dong
    Nie, Hao
    Zhang, Baowen
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [10] GPN: A novel gravity model based on position and neighborhood to identify influential nodes in complex networks
    Tu, Dengqin
    Xu, Guiqiong
    Meng, Lei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (17):