A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations

被引:29
|
作者
Ern, A
Proft, J
机构
[1] CERMICS, Ecole Natl Ponts & Chaussees, F-77455 Marne La Vallee, France
[2] Univ Marne La Vallee, CNRS, LAMA, UMR 8050, F-77454 Marne La Vallee, France
关键词
a posteriori error estimates; duality techniques; non-symmetric interior penalty; local discontinuous Galerkin; convection-diffusion equations;
D O I
10.1016/j.aml.2004.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimates are derived for unsteady convection-diffusion equations discretized with the nonsymmetric interior penalty and the local discontinuous Galerkin methods. First, an error representation formula in a user specified output functional is derived using duality techniques. Then, an L-t(2) (L-x(2)) a posteriori estimate consisting of elementwise residual-based error indicators is obtained by eliminating the dual solution. Numerical experiments are performed to assess the convergence rates of the various error indicators on a model problem. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:833 / 841
页数:9
相关论文
共 50 条