Multiple model regression estimation

被引:43
|
作者
Cherkassky, V [1 ]
Ma, YQ [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2005年 / 16卷 / 04期
基金
美国国家科学基金会;
关键词
learning formulation; multiple model estimation (MME); regression; robust estimation; support vector machines (SVMS);
D O I
10.1109/TNN.2005.849836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new learning formulation for multiple model estimation (MME). Under this formulation, training data samples are generated by several (unknown) statistical models. Hence, most existing learning methods (for classification or regression) based on a single model formulation are no longer applicable. We describe a general framework for MME. Then we introduce a constructive support vector machine (SVM)-based methodology for multiple regression estimation. Several empirical comparisons using synthetic and real-life data sets are presented to illustrate the proposed approach for multiple model regression formulation.
引用
收藏
页码:785 / 798
页数:14
相关论文
共 50 条