SPACE-TIME FRACTIONAL STOCHASTIC EQUATIONS ON REGULAR BOUNDED OPEN DOMAINS

被引:20
|
作者
Anh, Vo V. [1 ]
Leonenko, Nikolai N. [2 ]
Ruiz-Medina, Maria D. [3 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[2] Cardiff Univ, Math Inst, Senghennydd Rd, Cardiff CF24 4AG, S Glam, Wales
[3] Univ Granada, Fac Sci, C Fuente Nueva S-N, E-18071 Granada, Spain
基金
澳大利亚研究理事会;
关键词
Caputo-Djrbashian fractional-in-time derivative; Dirichlet regular bounded open domains; eigenfunction expansion; fractional pseudodifferential elliptic operators; Gaussian spatiotemporal white noise measure; Mittag-Leffler function; Riemannan-Liouville fractional integral and derivative; stochastic boundary value problems; KINETIC-EQUATIONS; RANDOM-FIELDS; DIFFUSION; DRIVEN;
D O I
10.1515/fca-2016-0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional (in time and in space) evolution equations defined on Dirichlet regular bounded open domains, driven by fractional integrated in time Gaussian spatiotemporal white noise, are considered here. Sufficient conditions for the definition of a weak-sense Gaussian solution, in the mean-square sense, are derived. The temporal, spatial and spatiotemporal Holder continuity, in the mean-square sense, of the formulated solution is obtained, under suitable conditions, from the asymptotic properties of the Mittag-Leffler function, and the asymptotic order of the eigenvalues of a fractional polynomial of the Dirichlet negative Laplacian operator on such bounded open domains.
引用
收藏
页码:1161 / 1199
页数:39
相关论文
共 50 条
  • [1] Space-Time Fractional Stochastic Equations on Regular Bounded Open Domains
    Vo V. Anh
    Nikolai N. Leonenko
    María D. Ruiz-Medina
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 1161 - 1199
  • [2] Non-linear Noise Excitation for some Space-Time Fractional Stochastic Equations in Bounded Domains
    Mohammud Foondun
    Jebessa B. Mijena
    Erkan Nane
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 1527 - 1553
  • [3] NON-LINEAR NOISE EXCITATION FOR SOME SPACE-TIME FRACTIONAL STOCHASTIC EQUATIONS IN BOUNDED DOMAINS
    Foondun, Mohammud
    Mijena, Jebessa B.
    Nane, Erkan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1527 - 1553
  • [4] Space-time fractional diffusion on bounded domains
    Chen, Zhen-Qing
    Meerschaert, Mark M.
    Nane, Erkan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 479 - 488
  • [5] Stochastic classical solutions for space-time fractional evolution equations on a bounded domain
    Toniazzi, Lorenzo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 594 - 622
  • [6] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    [J]. PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [7] Space-time fractional stochastic partial differential equations
    Mijena, Jebessa B.
    Nane, Erkan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) : 3301 - 3326
  • [8] Singular solutions for space-time fractional equations in a bounded domain
    Chan, Hardy
    Gomez-Castro, David
    Vazquez, Juan Luis
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (04):
  • [9] DISTRIBUTED-ORDER SPACE-TIME FRACTIONAL DIFFUSIONS IN BOUNDED DOMAINS
    Guerngar, Ngartelbaye
    Mccormick, James
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2783 - 2799
  • [10] Moment bounds of a class of stochastic heat equations driven by space-time colored noise in bounded domains
    Guerngar, Ngartelbaye
    Nane, Erkan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (10) : 6246 - 6270