Ultra-low and ultra-broad-band nonlinear acoustic metamaterials

被引:213
|
作者
Fang, Xin [1 ]
Wen, Jihong [1 ]
Bonello, Bernard [2 ]
Yin, Jianfei [1 ]
Yu, Dianlong [1 ]
机构
[1] Natl Univ Def Technol, Lab Sci & Technol Integrated Logist Support, Changsha 410073, Hunan, Peoples R China
[2] Univ Paris 06, Inst NanoSci Paris, INSP UMR CNRS 7588, Box 840,4 Pl Jussieu, F-75252 Paris 05, France
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-017-00671-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear acoustic metamaterials (LAMs) are widely used to manipulate sound; however, it is challenging to obtain bandgaps with a generalized width (ratio of the bandgap width to its start frequency) >1 through linear mechanisms. Here we adopt both theoretical and experimental approaches to describe the nonlinear chaotic mechanism in both one-dimensional (1D) and two-dimensional (2D) nonlinear acoustic metamaterials. This mechanism enables NAMs to reduce wave transmissions by as much as 20-40 dB in an ultra-low and ultra-broad band that consists of bandgaps and chaotic bands. With subwavelength cells, the generalized width reaches 21 in a 1D NAMs and it goes up to 39 in a 2D NAM, which overcomes the bandwidth limit for wave suppression in current LAMs. This work enables further progress in elucidating the dynamics of NAMs and opens new avenues in double-ultra acoustic manipulation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ultra-low and ultra-broad-band nonlinear acoustic metamaterials
    Xin Fang
    Jihong Wen
    Bernard Bonello
    Jianfei Yin
    Dianlong Yu
    [J]. Nature Communications, 8
  • [2] A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control
    Liang, Xiao
    Liang, Haofeng
    Chu, Jiaming
    Yang, Zhen
    Zhou, Zhuo
    Gao, Nansha
    Zhang, Siwen
    Zhou, Guojian
    Hu, Congfang
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2023,
  • [3] ULTRA-BROAD-BAND GAAS MONOLITHIC AMPLIFIER
    HONJO, K
    SUGIURA, T
    ITOH, H
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1982, 29 (07) : 1123 - 1129
  • [4] ULTRA-BROAD-BAND GAAS MONOLITHIC AMPLIFIER
    HONJO, K
    SUGIURA, T
    ITOH, H
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1982, 30 (07) : 1027 - 1033
  • [5] Optimal design for ultra-broad-band amplifier
    Liu, XM
    Lee, B
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (12) : 3446 - 3455
  • [6] Ultra-broad-band photodetection in a resonant tunneling device
    Martins, JF
    de Araujo, RE
    Gomes, ASL
    Leite, JRR
    Figueiredo, JML
    Stanley, CR
    Ironside, CN
    [J]. IMOC 2001: PROCEEDINGS OF THE 2001 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE: THE CHALLENGE OF THE NEW MILLENIUM: TECHNOLOGICAL DEVELOPMENT WITH ENVIRONMENTAL CONSCIOUSNESS, 2001, : 325 - 328
  • [7] IMPROVEMENTS IN ULTRA-BROAD-BAND TEM COUPLER DESIGN
    POTTER, CM
    HJIPIERIS, G
    [J]. IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1992, 139 (02) : 171 - 178
  • [8] RIDGED WAVEGUIDES FOR ULTRA-BROAD-BAND LIGHT MODULATORS
    MAGERL, G
    FROEHLING, PW
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1982, 30 (03) : 220 - 226
  • [9] Ultra-Broad-Band Six-Sector Patch Array
    Foo, Senglee
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2014, : 289 - 290
  • [10] Radial Gradient Seismic Metamaterials with Ultra-Low Frequency and Ultra-Wide Band Gap
    Yang, Qian
    Su, Kun
    Li, Lixia
    Li, Yan
    Bai, Jin
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (16):