Revisiting Error-Correction in Precommitment Distance-Bounding Protocols

被引:1
|
作者
Zhang, Jingyi [1 ]
Yang, Anjia [2 ]
Hu, Qiao [3 ]
Hancke, Gerhard Petrus [1 ]
Liu, Zhe [4 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Protocols; Error correction codes; Security; Terrorism; Systematics; Statistical analysis; Noise measurement; Distance-bounding (DB) protocol; relay attack;
D O I
10.1109/TII.2021.3134956
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distance-bounding (DB) protocols are used to verify the physical proximity of two devices. DB can be used to establish trusted ad-hoc connections in the industrial Internet-of-Things, e.g., nodes can verify they are deployed in the same location and monitoring the same piece of equipment. Thresholds and error correction codes (ECCs) are two methods to provide error-resilience for DB protocols working in noisy environments. However, the threshold method adds overheads and the ECC method increases the adversary success probability, compared to threshold, when implemented in precommitment DB protocols. In this article, we investigate the ECC method and demonstrate that designers can mitigate increased adversary success probability by using nonsystematic codes. To demonstrate this idea, we compare a prominent precommitment protocol by Brands and Chaum (BC) integrated with different types of ECCs with two existing error-resilience methods, showing how nonsystematic codes provide improved protocol security. Moreover, We further evaluate the BC protocol with nonsystematic ECCs and discuss how to configure protocols to minimize the protocol failure rate, while maintaining adequate attack success probability.
引用
收藏
页码:7097 / 7106
页数:10
相关论文
共 50 条
  • [1] Security Analysis of Two Distance-Bounding Protocols
    Abyaneh, Mohammad Reza Sohizadeh
    RFID SECURITY AND PRIVACY, 2012, 7055 : 94 - 107
  • [2] A Formal Approach to Distance-Bounding RFID Protocols
    Duerholz, Ulrich
    Fischlin, Marc
    Kasper, Michael
    Onete, Cristina
    INFORMATION SECURITY, 2011, 7001 : 47 - +
  • [3] Security Analysis of Two Distance-Bounding Protocols
    Abyaneh, Mohammad Reza Sohizadeh
    RFID: SECURITY AND PRIVACY: 7TH INTERNATIONALWORKSHOP, RFIDSEC 2011, 2012, 7055 : 94 - 107
  • [4] Distance-Bounding Protocols: Are You Close Enough?
    Dimitrakakis, Christos
    Mitrokotsa, Aikaterini
    IEEE SECURITY & PRIVACY, 2015, 13 (04) : 47 - 51
  • [5] On Selecting the Nonce Length in Distance-Bounding Protocols
    Mitrokotsa, Aikaterini
    Peris-Lopez, Pedro
    Dimitrakakis, Christos
    Vaudenay, Serge
    COMPUTER JOURNAL, 2013, 56 (10): : 1216 - 1227
  • [6] A Class of Precomputation-based Distance-bounding Protocols
    Mauw, Sjouke
    Toro-Pozo, Jorge
    Trujillo-Rasua, Rolando
    1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, 2016, : 97 - 111
  • [7] Security Implications of Implementing Multistate Distance-Bounding Protocols
    Zhang, Jingyi
    Yang, Anjia
    Hu, Qiao
    Hancke, Gerhard P.
    CPS-SPC'19: PROCEEDINGS OF THE ACM WORKSHOP ON CYBER-PHYSICAL SYSTEMS SECURITY & PRIVACY, 2019, : 99 - 108
  • [8] Embedding distance-bounding protocols within intuitive interactions
    Bussard, L
    Roudier, Y
    SECURITY IN PERVASIVE COMPUTING, 2004, 2802 : 143 - 156
  • [9] Distance-Bounding Protocols: Verification without Time and Location
    Mauw, Sjouke
    Smith, Zach
    Toro-Pozo, Jorge
    Trujillo-Rasua, Rolando
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2018, : 549 - 566
  • [10] On the optimal resistance against mafia and distance fraud in distance-bounding protocols
    Gil-Pons, Reynaldo
    Mauw, Sjouke
    Trujillo-Rasua, Rolando
    COMPUTER COMMUNICATIONS, 2023, 210 : 69 - 78