Canonical Moments and Random Spectral Measures

被引:13
|
作者
Gamboa, F. [1 ]
Rouault, A. [2 ]
机构
[1] Univ Toulouse 3, Inst Math, F-31062 Toulouse, France
[2] Univ Versailles St Quentin, Lab Math Versailles, F-78035 Versailles, France
关键词
Random matrices; Unitary ensemble; Jacobi ensemble; Spectral measure; Canonical moments; Large deviations; LARGE DEVIATIONS; ASYMPTOTICS; EIGENVALUE; PRINCIPLE; MATRICES; MUTATION; THEOREM;
D O I
10.1007/s10959-009-0239-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study some connections between the random moment problem and random matrix theory. A uniform draw in a space of moments can be lifted into the spectral probability measure of the pair (A, e), where A is a random matrix from a classical ensemble, and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix increases. The rate function for these large deviations involves the reversed Kullback information.
引用
收藏
页码:1015 / 1038
页数:24
相关论文
共 50 条
  • [1] Canonical Moments and Random Spectral Measures
    F. Gamboa
    A. Rouault
    [J]. Journal of Theoretical Probability, 2010, 23 : 1015 - 1038
  • [2] Erratum to: Canonical Moments and Random Spectral Measures
    F. Gamboa
    A. Rouault
    [J]. Journal of Theoretical Probability, 2017, 30 : 701 - 702
  • [3] Canonical Moments and Random Spectral Measures (vol 23, pg 1015, 2010)
    Gamboa, F.
    Rouault, A.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) : 701 - 702
  • [4] THE METHOD OF MOMENTS FOR RANDOM MEASURES
    ZESSIN, H
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (03): : 395 - 409
  • [5] Random Spectral Measures
    Major, Peter
    [J]. MULTIPLE WIENER-ITO INTEGRALS: WITH APPLICATIONS TO LIMIT THEOREMS, 2ND EDITION, 2014, 849 : 15 - 26
  • [6] Higher moments for random multiplicative measures
    Falconer, Kenneth J.
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2015, 2 (03) : 229 - 247
  • [7] The existence and moments of canonical branching chain in random environment
    Hu, DH
    [J]. ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 499 - 506
  • [8] THE EXISTENCE AND MOMENTS OF CANONICAL BRANCHING CHAIN IN RANDOM ENVIRONMENT
    胡迪鹤
    [J]. Acta Mathematica Scientia, 2004, (03) : 499 - 506
  • [9] Generalized Random Spectral Measures
    Dang Hung Thang
    Nguyen Thinh
    Tran Xuan Quy
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (02) : 576 - 600
  • [10] Generalized Random Spectral Measures
    Dang Hung Thang
    Nguyen Thinh
    Tran Xuan Quy
    [J]. Journal of Theoretical Probability, 2014, 27 : 576 - 600