High-frequency spectral analysis of thin periodic acoustic strips: Theory and numerics

被引:3
|
作者
Adams, S. D. M. [1 ]
Cherednichenko, K. D. [2 ]
Craster, R. V. [3 ]
Guenneau, S. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[4] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
关键词
BLOCH-WAVE HOMOGENIZATION; ASYMPTOTIC ANALYSIS; CONVERGENCE;
D O I
10.1017/S0956792510000215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the asymptotic behaviour of the high-frequency spectrum of the wave equation with periodic coefficients in a 'thin' elastic strip Sigma(eta) = (0, 1) X (-eta/2, eta/2), eta > 0. The main geometric assumption is that the structure period is of the order of magnitude of the strip thickness eta and is chosen in such a way that eta (1) is a positive large integer. On the boundary partial derivative Sigma(eta), we set Dirichlet (clamped) or Neumann (traction-free) boundary conditions. Aiming to describe sequences of eigenvalues of order eta(-2) in the above problem, which correspond to oscillations of high frequencies of order eta(-1), we study an appropriately rescaled limit of the spectrum. Using a suitable notion of two-scale convergence for bounded operators acting on two-scale spaces, we show that the limiting spectrum consists of two parts: the Bloch (or band) spectrum and the 'boundary' spectrum. The latter corresponds to sequences of eigenvectors concentrating on the vertical boundaries of Sigma(eta), and is characterised by a problem set in a semi-infinite periodic strip with either clamped or stress-free boundary conditions. Based on the observation that some of the related eigenvalues can be found by solving an appropriate periodic-cell problem, we use modal methods to investigate finite-thickness semi-infinite waveguides. We compare our results with those for finite-thickness infinite waveguides given in Adams et al. (Proc. R. Soc. Lond. A, vol. 464, 2008, pp. 2669-2692). We also study infinite-thickness semi-infinite waveguides in order to gain insight into the finite-height analogue. We develop an asymptotic algorithm making use of the unimodular property of the modal method to demonstrate that in the weak contrast limit, and when wavenumber across the guide is fixed, there is at most one surface wave per gap in the spectrum. Using the monomode property of the waveguide we can consider the gap structure for the nth mode, when doing so, for traction-free boundaries, we find exactly one surface wave in each n-band gap.
引用
收藏
页码:557 / 590
页数:34
相关论文
共 50 条
  • [1] HIGH-FREQUENCY ACOUSTIC BOTTOM PENETRATION - THEORY AND EXPERIMENT
    CHOTIROS, NP
    [J]. OCEANS 89, VOL 1-6: AN INTERNATIONAL CONFERENCE ADDRESSING METHODS FOR UNDERSTANDING THE GLOBAL OCEAN, 1989, : 1158 - 1161
  • [2] SPECTRAL THEORY OF EM WAVE SCATTERING BY PERIODIC STRIPS
    DANICKI, E
    LANGLI, B
    BLOTEKJAER, K
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1995, 43 (01) : 97 - 104
  • [3] The radiation efficiency of SAW periodic strips analysis at higher overtones based on the spectral theory
    Kawalec, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 154 (1): : 117 - 121
  • [4] The radiation efficiency of SAW periodic strips analysis at higher overtones based on the spectral theory
    A. Kawalec
    [J]. The European Physical Journal Special Topics, 2008, 154 : 117 - 121
  • [5] ROTARY SPECTRAL ANALYSIS OF HIGH-FREQUENCY NEARSHORE CURRENTS
    NIEDORODA, AW
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 295 - 295
  • [6] THEORY OF CHEMICAL ANALYSIS BY HIGH-FREQUENCY METHODS
    BLAEDEL, WJ
    MALMSTADT, HV
    PETITJEAN, DL
    ANDERSON, WK
    [J]. ANALYTICAL CHEMISTRY, 1952, 24 (08) : 1240 - 1244
  • [7] High-frequency standing longitudinal acoustic resonances in supported thin films
    Zhang, X
    Bandhu, RS
    Sooryakumar, R
    Jonker, BT
    [J]. PHYSICAL REVIEW B, 2003, 67 (07)
  • [8] MULTITAPER SPECTRAL-ANALYSIS OF HIGH-FREQUENCY SEISMOGRAMS
    PARK, J
    LINDBERG, CR
    VERNON, FL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B12): : 12675 - 12684
  • [9] Boundary perturbation methods for high-frequency acoustic scattering: Shallow periodic gratings
    Nicholls, David P.
    Reitich, Fernando
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 123 (05): : 2531 - 2541
  • [10] High-frequency acoustic noise of lake baikal High-frequency acoustic noise of Lake Baikal
    Ainutdinov, V. M.
    Balkanov, V. A.
    Belolaptikov, I. A.
    Bezrukov, L. B.
    Budnev, N. M.
    Vasil'ev, R. V.
    Wischnewski, R.
    Gaponenko, O. N.
    Gnatovskii, R. Yu.
    Gress, O. A.
    Gress, T. I.
    Grishin, O. G.
    Danil'chenko, I. A.
    Dzhilkibaev, Zh. -A. M.
    Doroshenko, A. A.
    Dyachok, A. N.
    Domogatskii, G. V.
    Zhukov, V. A.
    Klabukov, A. M.
    Klimov, A. I.
    Klimushin, S. I.
    Konishchev, K. V.
    Kochanov, A. A.
    Koshechkin, A. P.
    Kulepov, V. F.
    Kuz'michev, L. A.
    Lubsandorzhiev, B. K.
    Mikolajskii, T.
    Milenin, M. B.
    Mirgazov, R. R.
    Mikheev, S. P.
    Osipova, E. A.
    Panfilov, A. I.
    Pavlov, A. A.
    Pan'kov, G. L.
    Pan'kov, L. V.
    Pliskovskii, E. N.
    Poleshchuk, V. A.
    Popova, E. G.
    Pokhil, P. G.
    Prosin, V. V.
    Rozanov, M. I.
    Rubtsov, V. Yu.
    Tarashchanskii, B. A.
    Fialkovskii, S. V.
    Chenskii, A. G.
    Shaibonov, B. A.
    Spiering, Ch.
    Streicher, O.
    Yashin, I. V.
    [J]. ACOUSTICAL PHYSICS, 2006, 52 (05) : 495 - 504