Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics

被引:2
|
作者
Lim, Seyeong [1 ]
Lee, Gyudong [2 ]
Han, Sanghun [2 ]
Kim, Jigeon [3 ]
Yun, Sunhee [1 ]
Lim, Jongchul [4 ]
Pu, Yong-Jin [5 ]
Ko, Min Jae [3 ]
Park, Taiho [1 ]
Choi, Jongmin [2 ]
Kim, Younghoon [6 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
[2] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[3] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[4] Chungnam Natl Univ, Grad Sch Energy Sci & Technol, Daejeon 34134, South Korea
[5] RIKEN Ctr Emergent Matter Sci CEMS, Saitama 3510198, Japan
[6] Daegu Gyeongbuk Inst Sci & Technol DGIST, Div Energy Technol, Mat Res Inst, Daegu 42988, South Korea
来源
ACS ENERGY LETTERS | 2021年 / 6卷 / 06期
基金
新加坡国家研究基金会;
关键词
SOLAR-CELLS; NANOCRYSTALS; PASSIVATION; STABILITY; EMISSION; STRATEGY; CDSE;
D O I
10.1021/acsenergylett.1c00462
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bandtail broadening originating from increasing the polydispersity of colloidal quantum dots (CQDs) deteriorates opencircuit voltage (V-OC) and hinders charge-carrier transport in CQD photovoltaics. The development of colloidal synthetic routes has enabled preparing monodisperse perovskite CQDs (Pe-CQDs) that have attracted attention as promising absorbers in CQD photovoltaics. However, polar-antisolvent-based purification induces the dissolution and agglomeration of Pe-CQDs, resulting in an irregular size distribution. Consequently, the photovoltaic performance decreases because of the increase in Pe-CQD polydispersity. Here, we demonstrate the preparation of well-purified monodisperse CsPbI3-Pe-CQDs via size selection on the basis of gel permeation chromatography. Well-purified monodisperse Pe-CQDs exhibit improved photovoltaic performance and achieve a low Pe-CQD polydispersity. Furthermore, these Pe-CQDs show higher photoluminescence quantum yields, narrower full-widths at half-maximum, and lower Urbach energies, in comparison to irregular-sized Pe-CQDs without size selection. Therefore, CsPbI3-Pe-CQD solar cells comprising monodisperse Pe-CQDs show the highest power conversion efficiency (15.3%) and V-OC (1.27 V) among the fully inorganic CsPbI3-Pe-CQD solar cells reported so far.
引用
收藏
页码:2229 / 2237
页数:9
相关论文
共 50 条
  • [1] Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics
    Lim, Seyeong
    Lee, Gyudong
    Han, Sanghun
    Kim, Jigeon
    Yun, Sunhee
    Lim, Jongchul
    Pu, Yong-Jin
    Ko, Min Jae
    Park, Taiho
    Choi, Jongmin
    Kim, Younghoon
    [J]. ACS Energy Letters, 2021, 6 : 2229 - 2237
  • [2] Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics
    Zhang, Pengfei
    Feng, Yu
    Wen, Xiaoming
    Cao, Wenkai
    Anthony, Rebecca
    Kortshagen, Uwe
    Conibeer, Gavin
    Huang, Shujuan
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 : 391 - 396
  • [3] Incorporating quantum dots for high efficiency and stable perovskite photovoltaics
    Chen, Yuetian
    Zhao, Yixin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (47) : 25017 - 25027
  • [4] Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics
    Wheeler, Lance M.
    Sanehira, Erin M.
    Marshall, Ashley R.
    Schulz, Philip
    Suri, Mokshin
    Anderson, Nicholas C.
    Christians, Jeffrey A.
    Nordlund, Dennis
    Sokaras, Dimosthenis
    Kroll, Thomas
    Harvey, Steven P.
    Berry, Joseph J.
    Lin, Lih Y.
    Luther, Joseph M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (33) : 10504 - 10513
  • [5] Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics
    [J]. Wheeler, Lance M. (lance.wheeler@nrel.gov), 1600, American Chemical Society (140):
  • [6] Guanidinium-Pseudohalide Perovskite Interfaces Enable Surface Reconstruction of Colloidal Quantum Dots for Efficient and Stable Photovoltaics
    Yang, Jonghee
    Cho, Seong Chan
    Lee, Seungjin
    Yoon, Jung Won
    Jeong, Woo Hyeon
    Song, Hochan
    Oh, Jae Taek
    Lim, Seul Gi
    Bae, Sung Yong
    Lee, Bo Ram
    Ahmadi, Mahshid
    Sargent, Edward H.
    Yi, Whikun
    Lee, Sang Uck
    Choi, Hyosung
    [J]. ACS NANO, 2022, 16 (01) : 1649 - 1660
  • [7] Sequential cationic and anionic ligand exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics
    Wheeler, Lance
    Marshall, Ashley
    Sanehira, Erin
    Schulz, Philip
    Suri, Mokshin
    Anderson, Nicholas
    Berry, Joseph
    Lin, Lih
    Luther, Joseph
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] CdZnSe@ZnSe colloidal alloy quantum dots for high-efficiency all-inorganic perovskite solar cells
    Li, Qinghua
    Bai, Jinke
    Zhang, Tingting
    Nie, Chao
    Duan, Jialong
    Tang, Qunwei
    [J]. CHEMICAL COMMUNICATIONS, 2018, 54 (69) : 9575 - 9578
  • [9] High-Efficiency Photoelectric Regulation of Resistive Switching Memory in Perovskite Quantum Dots
    Ren, Shuxia
    Yang, Zheng
    An, Shuailling
    Meng, Jie
    Liu, Xiaomin
    Zhao, Jinjin
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (12)
  • [10] Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family
    Wang, Baohua
    Xiao, Xudong
    Chen, Tao
    [J]. NANOSCALE, 2014, 6 (21) : 12287 - 12297