On Families of Wigner Functions for N-Level Quantum Systems

被引:3
|
作者
Abgaryan, Vahagn [1 ,2 ,3 ]
Khvedelidze, Arsen [1 ,4 ,5 ]
机构
[1] Joint Inst Nucl Res, Lab Informat Technol, Dubna 141980, Russia
[2] Peoples Friendship Univ Russia, Res Ctr Computat Methods Appl Math, Inst Appl Math & Telecommun, Moscow 117198, Russia
[3] A Alikhanyan Natl Lab, Theoret Phys Div, 2 Alikhanian Bros St, Yerevan 0036, Armenia
[4] Iv Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Tbilisi 0179, Georgia
[5] Georgian Tech Univ, Inst Quantum Phys & Engn Technol, Tbilisi 0175, Georgia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 06期
关键词
quantum mechanics on phase space; finite-level quantum systems; SU(2) spin-j symbol correspondence; SU(3); REPRESENTATION;
D O I
10.3390/sym13061013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary N-level quantum system is proposed. The method is based on the reformulation of the Stratonovich-Weyl correspondence in the form of algebraic "master equations" for the spectrum of the Stratonovich-Weyl kernel. The later implements a map between the operators in the Hilbert space and the functions in the phase space identified by the complex flag manifold. The non-uniqueness of the solutions to the master equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among all possible Stratonovich-Weyl kernels for a N=(2j+1)-level system, one can always identify the representative that realizes the so-called SU(2)-symmetric spin-j symbol correspondence. The method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Resonance in n-level quantum systems
    Boscain, U
    Chadot, G
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 726 - 731
  • [2] Coherent quantum observers for n-level quantum systems
    Miao, Z.
    Espinosa, Luis A. Duffaut
    Petersen, I. R.
    Ugrinovskii, V.
    James, M. R.
    2013 3RD AUSTRALIAN CONTROL CONFERENCE (AUCC), 2013, : 313 - 318
  • [3] Resonance of minimizers for n-level quantum systems
    Boscain, U
    Charlot, G
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 416 - 421
  • [4] Robust steering of n-level quantum systems
    Ticozzi, F
    Ferrante, A
    Pavon, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (10) : 1742 - 1745
  • [5] Weak classicality in coupled N-level quantum systems
    Radha Pyari Sandhir
    V. Ravishankar
    The European Physical Journal D, 2019, 73
  • [6] Optimal control of superconducting N-level quantum systems
    Jirari, H.
    Hekking, F. W. J.
    Buisson, O.
    EPL, 2009, 87 (02)
  • [7] Weak classicality in coupled N-level quantum systems
    Sandhir, Radha Pyari
    Ravishankar, V.
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (06):
  • [8] Nonlinear Description of Quantum Dynamics. N-level quantum systems
    Cruz-Prado, Hans
    Marmo, Giuseppe
    Schuch, Dieter
    SYMMETRIES IN SCIENCE XVIII, 2020, 1612
  • [9] Resonance of minimizers for N-level quantum systems with an arbitrary cost
    Boscain, U
    Charlot, G
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (04) : 593 - 614
  • [10] ON EXPONENTIAL STABILIZATION OF N-LEVEL QUANTUM ANGULAR MOMENTUM SYSTEMS
    Liang, Weichao
    Amini, Nina H.
    Mason, Paolo
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (06) : 3939 - 3960