A cohomological approach to the non-abelian Seiberg-Witten map

被引:1
|
作者
Brace, DM [1 ]
Cerchiai, BL
Pasqua, AF
Varadarajan, U
Zumino, B
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
来源
关键词
string duality; brane dynamics in gauge theories; gauge symmetry; non-commutative geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a cohomological method for obtaining the non-abelian Seiberg-Witten map for any gauge group and to any order in theta. By introducing a ghost field, we are able to express the equations defining the Seiberg-Witten map through a coboundary operator, so that they can be solved by constructing a corresponding homotopy operator.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Non-Abelian noncommutative gauge fields and Seiberg-Witten map
    Schupp, P
    [J]. MODERN PHYSICS LETTERS A, 2001, 16 (4-6) : 343 - 347
  • [2] Non-Abelian Seiberg-Witten equations on Einstein manifolds
    Leung, NC
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 519 : 17 - 29
  • [3] Non-abelian Seiberg-Witten theory and stable oriented pairs
    Teleman, A
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (04) : 507 - 535
  • [4] Hamiltonian BRST quantization of a noncommutative non-Abelian gauge theory and its Seiberg-Witten map
    Amorim, R
    Farias, FA
    [J]. PHYSICAL REVIEW D, 2004, 69 (04):
  • [5] Wu-Yang monopoles and non-Abelian Seiberg-Witten equations
    Dereli, T
    Tekmen, M
    [J]. MODERN PHYSICS LETTERS A, 1998, 13 (22) : 1803 - 1807
  • [6] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    Cruz-Filho, J. S.
    Amorim, R. G. G.
    Khanna, F. C.
    Santana, A. E.
    Santos, A. F.
    Ulhoa, S. C.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3203 - 3224
  • [7] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    J. S. Cruz-Filho
    R. G. G. Amorim
    F. C. Khanna
    A. E. Santana
    A. F. Santos
    S. C. Ulhoa
    [J]. International Journal of Theoretical Physics, 2019, 58 : 3203 - 3224
  • [8] A non-abelian Seiberg-Witten invariant for integral homology 3-spheres
    Lim, YH
    [J]. GEOMETRY & TOPOLOGY, 2003, 7 : 965 - 999
  • [9] The Seiberg-Witten map and topology
    Polychronakos, AP
    [J]. ANNALS OF PHYSICS, 2002, 301 (02) : 174 - 183
  • [10] Singularities of the Seiberg-Witten map
    Bytsko, AG
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01):