Multi-module Fusion Relevance Attention Network for Multi-label Text Classification

被引:0
|
作者
Yu, Xinmiao [1 ]
Li, Zhengpeng [1 ]
Wu, Jiansheng [1 ]
Liu, Mingao [1 ]
机构
[1] Univ Sci & Technol Liaoning, Anshan 114051, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; neural network; multi-label text classification; attention mechanism;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To solve the multi-label text classification (MLTC) task, we propose a multi-module fusion relevance attention network (MFRAN) to explore the semantic correlation between text and category labels. Firstly, the MFRAN model uses a text feature extraction module to capture text information with a strong correlation with category labels and uses multi-head self-attention to obtain the attention score of the corresponding text. Then the learned word-level text semantic information is transmitted to the label attention layer of the category label feature extraction module through multi-dimensional dilated convolution. At the same time, the attention score of category labels is obtained by the bidirectional long short-term memory and label attention layer. The adaptive attention fusion module is used to fuse the text attention score with the attention score of the category label and select the text representation with large output information. We performed a large number of comparative experiments and ablation experiments on the RCV1-V2 and AAPD datasets. The experimental results have proved the MFRAN model is similar to or even exceeds the baseline model when dealing with MLTC tasks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-label legal text classification with BiLSTM and attention
    Enamoto, Liriam
    Santos, Andre R. A. S.
    Maia, Ricardo
    Weigang, Li
    Rocha Filho, Geraldo P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2022, 68 (04) : 369 - 378
  • [2] Multi-task Hierarchical Cross-Attention Network for Multi-label Text Classification
    Lu, Junyu
    Zhang, Hao
    Shen, Zhexu
    Shi, Kaiyuan
    Yang, Liang
    Xu, Bo
    Zhang, Shaowu
    Lin, Hongfei
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 156 - 167
  • [3] Multi-Label Text Classification model integrating Label Attention and Historical Attention
    Sun, Guoying
    Cheng, Yanan
    Dong, Fangzhou
    Wang, Luhua
    Zhao, Dong
    Zhang, Zhaoxin
    Tong, Xiaojun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [4] Multi-Label Text Classification Based on Label Combination and Fusion of Attentions
    Wu, Xinke
    Sun, Jun
    Li, Zhihua
    [J]. Computer Engineering and Applications, 2023, 59 (06) : 125 - 133
  • [5] Incorporating keyword extraction and attention for multi-label text classification
    Zhao, Hua
    Li, Xiaoqian
    Wang, Fengling
    Zeng, Qingtian
    Diao, Xiuli
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 2083 - 2093
  • [6] Multi-Label Image Classification by Feature Attention Network
    Yan, Zheng
    Liu, Weiwei
    Wen, Shiping
    Yang, Yin
    [J]. IEEE ACCESS, 2019, 7 : 98005 - 98013
  • [7] An Interactive Fusion Model for Hierarchical Multi-label Text Classification
    Zhao, Xiuhao
    Li, Zhao
    Zhang, Xianming
    Wang, Jibin
    Chen, Tong
    Ju, Zhengyu
    Wang, Canjun
    Zhang, Chao
    Zhan, Yiming
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 168 - 178
  • [8] Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach
    Huang, Wei
    Chen, Enhong
    Liu, Qi
    Chen, Yuying
    Huang, Zai
    Liu, Yang
    Zhao, Zhou
    Zhang, Dan
    Wang, Shijin
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1051 - 1060
  • [9] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [10] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    [J]. Applied Intelligence, 2023, 53 : 8761 - 8775