The n-order rogue waves of Fokas-Lenells equation

被引:77
|
作者
Xu, Shuwei [1 ,2 ]
He, Jingsong [3 ]
Cheng, Yi [1 ]
Porseizan, K. [4 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[4] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
关键词
the nonlinear Schrodinger equation; Fokas-Lenells equation; Darboux transformation; breather solution; rogue wave; INTEGRABLE GENERALIZATION; SOLITON; REPRESENTATION; HIERARCHY;
D O I
10.1002/mma.3133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering certain terms of the next asymptotic order beyond the nonlinear Schrodinger equation, the Fokas-Lenells (FL) equation governed by the FL system arises as a model for nonlinear pulse propagation in optical fibers. The expressions of the q([n]) and r([n]) in the FL system are generated by the n-fold Darboux transformation (DT), each element of the matrix is a 2x2 matrix, expressed by a ratio of (2n+1)x(2n+1) determinant and 2nx2n determinant of eigenfunctions. Further, a Taylor series expansion about the n-order breather solutions q([n]) generated using by DT and assuming periodic seed solutions under reduction can generate the n-order rogue waves of the FL equation explicitly with 2n+3 free parameters. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1106 / 1126
页数:21
相关论文
共 50 条
  • [1] Rogue Waves of the Fokas-Lenells Equation
    He, Jingsong
    Xu, Shuwei
    Porsezian, Kuppuswamy
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (12)
  • [2] Breather Positons and Rogue Waves for the Nonlocal Fokas-Lenells Equation
    Wang, Chun
    Fan, Rong
    Zhang, Zhao
    Li, Biao
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [3] Rogue wave patterns of the Fokas-Lenells equation
    Yan, Xue-wei
    Chen, Yong
    [J]. EPL, 2023, 144 (06)
  • [4] Rogue waves and their patterns for the coupled Fokas-Lenells equations
    Ling, Liming
    Su, Huajie
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [5] A Hermitian symmetric space Fokas-Lenells equation: Solitons, breathers, rogue waves
    Geng, Xianguo
    Shen, Jing
    Xue, Bo
    [J]. ANNALS OF PHYSICS, 2019, 404 : 115 - 131
  • [6] High-order rogue waves and their dynamics of the Fokas-Lenells equation revisited: a variable separation technique
    Wang, Zihao
    He, Linyun
    Qin, Zhenyun
    Grimshaw, Roger
    Mu, Gui
    [J]. NONLINEAR DYNAMICS, 2019, 98 (03) : 2067 - 2077
  • [7] Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation
    Wang, Xin
    Wei, Jiao
    Wang, Lei
    Zhang, Jianlin
    [J]. NONLINEAR DYNAMICS, 2019, 97 (01) : 343 - 353
  • [8] Combined optical solitary waves of the Fokas-Lenells equation
    Triki, Houria
    Wazwaz, Abdul-Majid
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (04) : 587 - 593
  • [9] Higher-order rogue wave solutions of the (2+1)-dimensional Fokas-Lenells equation
    Zhao, Qiulan
    Song, Huijie
    Li, Xinyue
    [J]. WAVE MOTION, 2022, 115
  • [10] Dynamical analysis of higher-order rogue waves on the various backgrounds for the reverse space-time Fokas-Lenells equation
    Song, Jiang-Yan
    Xiao, Yu
    Zhang, Chi-Ping
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 150