A compact finite difference scheme for the fourth-order fractional diffusion-wave system

被引:61
|
作者
Hu, Xiuling [1 ,2 ]
Zhang, Luming [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
[2] Xuzhou Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
关键词
Diffusion-wave system; Compact difference scheme; Extrapolation; Solvability; Stability; Convergence; NUMERICAL-METHOD; EQUATION;
D O I
10.1016/j.cpc.2011.04.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A high-order compact finite difference scheme combined with the temporal extrapolation technique is investigated for the fourth-order fractional diffusion-wave system in this paper. The solvability, stability and convergence of the scheme are analyzed simultaneously by the energy method. Numerical experiments show that the proposed compact scheme is more accurate and efficient than the Crank-Nicolson scheme. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:1645 / 1650
页数:6
相关论文
共 50 条
  • [1] A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system
    Hu, Xiuling
    Zhang, Luming
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (10) : 2215 - 2231
  • [2] A fast compact finite difference scheme for the fourth-order diffusion-wave equation
    Wang, Wan
    Zhang, Haixiang
    Zhou, Ziyi
    Yang, Xuehua
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (02) : 170 - 193
  • [3] On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems
    Hu, Xiuling
    Zhang, Luming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5019 - 5034
  • [4] Compact Finite Difference Scheme for the Fourth-Order Fractional Subdiffusion System
    Vong, Seakweng
    Wang, Zhibo
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (04) : 419 - 435
  • [5] Local error estimates of the fourth-order compact difference scheme for a time-fractional diffusion-wave equation
    Zhang, Dan
    An, Na
    Huang, Chaobao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 142 : 283 - 292
  • [6] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [7] A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 80 - 95
  • [8] Error Analysis of the Nonuniform Alikhanov Scheme for the Fourth-Order Fractional Diffusion-Wave Equation
    An, Zihao
    Huang, Chaobao
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [9] High Accuracy Numerical System for Fourth-order Fractional Diffusion-wave Model
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1137 - 1142
  • [10] An efficient numerical treatment of fourth-order fractional diffusion-wave problems
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1324 - 1347