String bracket and flat connections

被引:5
|
作者
Abbaspour, Hossein [1 ]
Zeinalian, Mahmoud [2 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Long Isl Univ, Cw Post Coll, Greenvale, NY 11548 USA
来源
关键词
D O I
10.2140/agt.2007.7.197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G --> P --> M be a flat principal bundle over a compact and oriented manifold M of dimension m = 2d. We construct a map Psi: H-2*(S1), (LM) --> O(MC) of Lie algebras, where H-2*(S1) (LM) is the even dimensional part of the equivariant homology of LM, the free loop space of M, and MC is the Maurer-Cartan moduli space of the graded differential Lie algebra Omega* (M, ad P). the differential forms with values in the associated adjoint bundle of P. For a 2-dimensional manifold M, our Lie algebra map reduces to that constructed by Goldman [17]. We treat different Lie algebra structures on H-2*(S1) (LM) depending on the choice of the linear reductive Lie group G in our discussion. This paper provides a mathematician-friendly formulation and proof of the main result of Cattaneo, Frohlich and Pedrini [3] for G = GL(n, C) and GL(n, R) together with its natural generalization to other reductive Lie groups.
引用
收藏
页码:197 / 231
页数:35
相关论文
共 50 条
  • [1] Flat connections in open string mirror symmetry
    Murad Alim
    Michael Hecht
    Hans Jockers
    Peter Mayr
    Adrian Mertens
    Masoud Soroush
    [J]. Journal of High Energy Physics, 2012
  • [2] Flat connections in open string mirror symmetry
    Alim, Murad
    Hecht, Michael
    Jockers, Hans
    Mayr, Peter
    Mertens, Adrian
    Soroush, Masoud
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [3] Algebraic string bracket as a Poisson bracket
    Abbaspour, Hossein
    Tradler, Thomas
    Zeinalian, Mahmoud
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (03) : 331 - 347
  • [4] The homotopy invariance of the string topology loop product and string bracket
    Cohen, Ralph L.
    Klein, John R.
    Sullivan, Dennis
    [J]. JOURNAL OF TOPOLOGY, 2008, 1 (02) : 391 - 408
  • [5] A reduction of the string bracket to the loop product
    Kuribayashi, Katsuhiko
    Naito, Takahito
    Wakatsuki, Shun
    Yamaguchi, Toshihiro
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (05):
  • [6] Projectively flat connections and flat connections on homogeneous spaces
    Urakawa, Hajime
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2010, 39 (02) : 139 - 155
  • [7] Questions & answers: The complex evolution of [Left angle bracket]string[Right Angle Bracket]
    Becker, Pete
    [J]. C/C++ Users Journal, 1998, 16 (01):
  • [8] Constant connections, quantum holonomies and the Goldman bracket
    Nelson, J. E.
    Picken, R. F.
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (03) : 407 - 433
  • [9] Flat connections from flat gerbes
    Keurentjes, A
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2002, 50 (8-9): : 916 - 922
  • [10] FLAT CONNECTIONS AND POLYUBLES
    FOCK, VV
    ROSLY, AA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) : 526 - 534