Spatial evolution of water surface waves: Numerical simulation and experiment of bichromatic waves

被引:0
|
作者
Trulsen, K [1 ]
Stansberg, CT [1 ]
机构
[1] SINTEF, Appl Math, Oslo, Norway
关键词
wave groups; bichromatic waves; nonlinear Schrodinger equation;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The modified nonlinear Schrodinger (MNLS) equation for spatial evolution of weakly nonlinear water surface waves is shown to yield good comparisons with experimental measurements of bichromatic waves in a long tank. While linear theory does not predict neither the phase velocity nor the evolution of the envelope well, the cubic nonlinear Schrodinger (NLS) equation improves the prediction of the phase velocity but not the modulation of the envelope. The MNLS equation predicts both the evolution of individual wave crests and the modulation of the envelope over longer fetch, and thus permits accurate forecasting of individual ocean wave crests over a fetch of several tens of wavelengths.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] NUMERICAL SIMULATION OF WATER WAVES
    CHAN, RKC
    STREET, RL
    FROMM, JE
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1969, 50 (11): : 630 - &
  • [2] On the efficient numerical simulation of directionally spread surface water waves
    Bateman, WJD
    Swan, C
    Taylor, PH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (01) : 277 - 305
  • [3] Bichromatic water waves in finite depth
    Madsen, PA
    Fuhrman, DR
    [J]. TOPICAL PROBLEMS OF NONLINEAR WAVE PHYSICS, 2006, 5975
  • [4] Modelling and simulation of surface water waves
    van Groesen, E
    Westhuis, JH
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 59 (04) : 341 - 360
  • [5] SCATTERING OF RAYLEIGH SURFACE-WAVES BY EDGE CRACKS - NUMERICAL-SIMULATION AND EXPERIMENT
    HIRAO, M
    FUKUOKA, H
    MIURA, Y
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1982, 72 (02): : 602 - 606
  • [6] Numerical simulation of fluid flows with surface waves
    Shokin, YI
    [J]. HYDROINFORMATICS '98, VOLS 1 AND 2, 1998, : 213 - 218
  • [7] Numerical Simulation of Extreme Free Surface Waves
    Westphalen, Jan
    Greaves, Deborah
    Williams, Chris
    Zang, Jun
    Taylor, Paul
    [J]. PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2008, : 55 - +
  • [8] Stability of bichromatic gravity waves on deep water
    Leblanc, Stephane
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2009, 28 (05) : 605 - 612
  • [9] A numerical study of the exact evolution equations for surface waves in water of finite depth
    Li, YA
    Hyman, JM
    Choi, WY
    [J]. STUDIES IN APPLIED MATHEMATICS, 2004, 113 (03) : 303 - 324
  • [10] Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current
    Tong, Dagui
    Liao, Chencong
    Chen, Jinjian
    Zhang, Qi
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2018, 6 (03)