An ultralight and thermally conductive Ti3C2Tx MXene-silver nanowire cellular composite film for high-performance electromagnetic interference shielding

被引:0
|
作者
Ma, Zhenping [1 ]
Feng, Hui [1 ]
Feng, Yongbao [1 ]
Ding, Xin [2 ]
Wang, Xianzhen [1 ]
Wang, Wei [1 ]
Zhang, Xiaojie [1 ]
Kong, Shuo [1 ]
Lan, Xiong [1 ]
Li, Qiulong [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROWAVE-ABSORPTION; NANOCOMPOSITES; MECHANISM; FOAMS;
D O I
10.1039/d2tc02856e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lightweight high-performance electromagnetic interference (EMI) shielding materials with excellent thermal conductivity and outstanding EMI shielding performances are highly satisfactory for modern integrated electronic and telecommunication systems in the fields of military, aerospace, smart and wearable electronics, and artificial intelligence. Herein, we prepared a cellular MXene@silver nanowire (Ag NW) composite film by a simple vacuum-assisted filtration process induced by potassium ions and freeze-drying after rapid pre-freezing with liquid nitrogen. The construction of the cellular structure can effectively improve the shielding effectiveness. Upon introducing the Ag NWs in the system, the interconnection networks were constructed for the MXene@Ag NW composite film, which significantly improved the electrical and thermal conductivity, further enhancing EMI shielding performance. The composite film with 80 wt% Ag NWs can deliver a high conductivity of 1245 S cm(-1), ultrahigh EMI shielding efficiency (SE) of 81.11 dB in the X-band, and a high thermal conductivity of 26.19 W m(-1) K-1. The prepared MXene@Ag NW cellular composite film has the advantages of high shielding efficiency and good thermal conductivity, which has important application value in manufacturing lightweight, high shielding efficiency materials and avoiding heat accumulation of electronic devices.
引用
收藏
页码:14169 / 14179
页数:11
相关论文
共 50 条
  • [1] Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding
    Chen, Wei
    Liu, Liu-Xin
    Zhang, Hao-Bin
    Yu, Zhong-Zhen
    [J]. ACS NANO, 2020, 14 (12) : 16643 - 16653
  • [2] Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding
    Deng, Zhiming
    Tang, Pingping
    Wu, Xinyu
    Zhang, Hao-Bin
    Yu, Zhong-Zhen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 20539 - 20547
  • [3] Ultralight and Highly Conductive Silver Nanowire Aerogels for High-Performance Electromagnetic Interference Shielding
    Peng, Fei
    Zhu, Wenbo
    Fang, Yi
    Fu, Bicheng
    Chen, Hongtao
    Ji, Hongjun
    Ma, Xing
    Hang, Chunjin
    Li, Mingyu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (03) : 4284 - 4293
  • [4] Ultralight, Conductive Ti3C2Tx MXene/PEDOT:PSS Hybrid Aerogels for Electromagnetic Interference Shielding Dominated by the Absorption Mechanism
    Yang, Guo-Yu
    Wang, Shao-Zhe
    Sun, Hong-Tai
    Yao, Xu-Ming
    Li, Chuan-Bing
    Li, Yu-Jun
    Jiang, Jian-Jun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57521 - 57531
  • [5] Progress of high performance Ti3C2Tx MXene nanocomposite films for electromagnetic interference shielding
    Hu, Guirong
    Cen, Zhuoqi
    Xiong, Yuzhu
    Liang, Kun
    [J]. NANOSCALE, 2023, 15 (12) : 5579 - 5597
  • [6] High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film
    Liang, Luyang
    Yao, Chao
    Yan, Xu
    Feng, Yuezhan
    Hao, Xin
    Zhou, Bing
    Wang, Yaming
    Ma, Jianmin
    Liu, Chuntai
    Shen, Changyu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24560 - 24570
  • [7] Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding
    Miao, Miao
    Liu, Ruiting
    Thaiboonrod, Sineenat
    Shi, Liyi
    Cao, Shaomei
    Zhang, Jianfeng
    Fang, Jianhui
    Feng, Xin
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (09) : 3120 - 3126
  • [8] Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding
    Wang, Yu
    Qi, Qingbin
    Yin, Guang
    Wang, Wei
    Yu, Dan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (18) : 21831 - 21843
  • [9] Ultrathin, Strong, and Highly Flexible Ti3C2Tx MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding
    Wan, Yizao
    Xiong, Peixun
    Liu, Jinzhi
    Feng, Fangfang
    Xun, Xiaowei
    Gama, Francisco M.
    Zhang, Quanchao
    Yao, Fanglian
    Yang, Zhiwei
    Luo, Honglin
    Xu, Yunhua
    [J]. ACS NANO, 2021, 15 (05) : 8439 - 8449
  • [10] Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment
    Yao, Junru
    Zhang, Lei
    Yang, Feng
    Jiao, Zibao
    Tao, Xuewei
    Yao, Zhengjun
    Zheng, Yongmei
    Zhou, Jintang
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 446